

Future High Energy Frontier Facilities

Manqi RUAN (CepC/IHEP) and Vladimir SHILTSEV (Fermilab) Conference on Flavor Physics and CP Violation (FPCP 2019) 06-10 May 2019 – University of Victoria

5/10/2019 Ruan & Shiltsev | FPCP 2019 Future Colliders

Higgs measurement at e+e- & pp ment at the LHC, CERN et: 2012-May-27 23 35:47 27 230 GMT DRUID, RunNum = 0, EventNum = 5401 196099 / 137440354

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

5/05/2019

FPCP@Victoria, BC Complementary 6

🗲 Fermilab

Multiple e+e- Higgs factories are proposed

ILC (a): TDR released in 2013 FCC (b): CDR released in 2019 CEPC (c): CDR released in 2018 CLIC (d): CDR released in 2013 5/05/2019

20 km, SRF, 130 MW power, 250 GeV c.m.e. Cost estimate 7 B\$
100 km, three rings, power ~300MW (tbd) Cost est. 10.5 BCHF
100 km, three rings, ~200-300 MW, Cost est. "<6 B\$"
11 km for 380 GeV c.m.e.NC RF, 168 MW Cost est. 5.9 BCHF

EDCD/ Wistoria DC

5/10/2019 Ruan & Shiltsev I FPC LHC is 27 km long, SC magnets, 150 MW, 3.8-4.8 BCHF *

Luminosity *e+e-* : Circular vs Linear

Challenges of e+e- Ring HF's

Power limited regime. Synchrotron radiation power from both beams limited to 100 MW (*P*/η=total cite power). Beam current *I* is determined by power.

6

• Luminosity determined by bend radius ρ , beam-beam parameter ζ_y , beta function at the IP β_v^* and power

$$\mathscr{L}\gamma^{3} = \frac{3}{16\pi r_{e}^{2}(m_{e}c^{2})} \left[\rho \frac{\xi_{y}P_{T}}{\beta_{y}^{*}}H(\beta_{y}^{*},\sigma_{z})\right]$$

• $\xi_y = 0.13$ new beam-beam instability; while synchrotron radiation $\Delta E_{turn}/E \sim 0.1$ -5% per turn Z to 360 GeV, the beam-strahlung is at IPs only and spreads $\delta E/E \sim 0.1$ -0.2%, but tails upto 10x that $\pm 2.5\%$ determine 18 min beam lifetime ~18 min \rightarrow need large acceptance optics $\beta_v * = 0.8$ -1.6 mm and full energy booster

Comparison: Linear & Circular

- Linear:
 - Center of mass energy can be efficiently increased from the minimal energy of a e+e- Higgs factory (240/250 GeV),
 - Access to tt threshold (350 GeV), ttH and Higgs self couplings (500 GeV or higher)
 - Significantly increase the accuracy on the Higgs width measurement (as the W fusion process's Xsec and signal-background separation increases and improves at high energy)
 - Longitudinal Polarized beam could significantly increase the physics reach
- Circular:
 - Very efficient in delivering luminosities at low energy!
 - 100 Million/1 Giga of W boson, 1 Tera Z boson or higher at CEPC/FCC
 - Precise determination of the beam energy using resonant depolarization method
 - Huge potential to Higgs physics, EW, Flavor, QCD, top physics...
 - Can be upgraded to pp collider with c.m.s energy ~ 100 TeV.

linear – circular Complementarity

5/05/2019

7

5/10/2019 Ruan & Shiltsev I FPCP 2019 Future Colliders

NB: Real complimentarity is hardly possible because of the cost of these facilities (> LHC)

Linear Higgs Factories

- All key items addressed by R&D and test facilities:
 - 31.5 MV/m at FNAL, KEK, etc ... "ready now"
- Radiation at IP (beam strahlung) is growing issue :
 - $\delta E/E$ ~1.5% in ILC, 40% of CLIC lumi 1% off \sqrt{s}

Ring Higgs Factories's - R&D ahead :

• High efficient RF sources:

- Klystron 400/800 MHz η from 65% to >85%
- High efficiency SRF cavities:
 - 10-15 MV/m and high Q_0 ; Nb-on-Cu, Nb₃Sn
- Energy Storage and Release R&D:
 - Magnet energy re-use > 20,000 cycles
- Efficient Use of Excavated Materials:
 - 10 million cu.m. out of 100 km tunnel Ruan & Shiltsev I FPCP 2019 Future Colliders

Chinese Electron Positron Collider CepC CDR released in Nov. 2018

HEP-CEPC-OR-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018 IHEP-CIPC-08-2018-02 IHEP-EP-2018-01 IHEP-TH-2018-01

CEPC Conceptual Design Report Volume II - Physics & Detector

> The CEPC Study Group October 2018

CEPC CDR Parameters

D. Wang

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs	2					
Beam energy (GeV)	120	80	45.5			
Circumference (km)	100					
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.34 0.036			
Crossing angle at IP (mrad)	16.5×2					
Piwinski angle	2.58 7.0		23.	8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)			
Beam current (mA)	17.4	87.9	461.0			
Synchrotron radiation power /beam (MW)	30	30	16.5			
Bending radius (km)	10.7					
Momentum compact (10-5)	1.11					
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072		
RF voltage V_{RF} (GV)	2.17	0.47 0.10				
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)					
Natural bunch length σ_z (mm)	2.72	2.98	2.42			
Bunch length σ_z (mm)	3.26	5.9	8.5			
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94			
Natural energy spread (%)	0.1	0.066	0.038			
Energy acceptance requirement (%)	1.35	0.4	0.23			
Energy acceptance by RF (%)	2.06	1.47	1.7			
Photon number due to beamstrahlung	0.1	0.05	0.023			
Lifetime _simulation (min)	100					
Lifetime (hour)	0.67	1.4	4.0	2.1		
F (hour glass)	0.89	0.94	0.99			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	(2.93)	10.1	16.6	32.1		

CEPC SCRF Cavities

650 MHz 1-cell cavity

Accelerating gradient (Eacc) reach 36.0 MV/m, Q = 5.1E10 @ Eacc = 26 MV/m.

Next, increase the Q and Eace through N-doping, EP, etc. Target: **5E10@42MV/m** for vertical test. **Record highest Q-factor in China**

4.00

1st 650MHz Klystron Manufacturer and Infrastructure Preparation Progress

Z.S. Zhou

Modulator anode components

Cavities components

Klystron output window

Assembly plant construction

Large size baking furnace commissioning

Civil Engineering & Site Selection

Factors affecting site selection:

1, Social factors:

National planning, Regional economic

conditions, Cultural environment,

Immigration, Environmental protection.

2. Natural conditions and engineering factors:

Climate, Traffic, Topographical geology,

Engineering layout, Construction Conditions,

Engineering investment.

3, Operating factor:

Water supply, power supply, operating costs

In China, there are many sites that meet the construction conditions.

International Science City

Overall Scale : 3.3km² of construction area for short-term use & 6.7km² for future use.

Future Energy Frontier Colliders

- All proposals are focused on :
 - (Affordable) Cost and Luminosity
- Usually :
 - Scale of civil construction grows with Energy
 - Cost of accelerator components grows with Energy
 - Requirement site power grows with Energy
- So, the total cost grows with ENERGY
 - Thankfully, not linearly, more like $\cos t \sim \beta E^{\kappa}$, $\kappa \approx \frac{1}{2} \pm \frac{1}{6}$
 - Take ILC as an example: $0.25 \rightarrow 0.5 \rightarrow 1$ TeV 0.69 : 1 : 1.67
 - Still, huge challenge for energies E some x10 of LHC
 - Choice of technology (β) and *prior investments* are critical

🎝 Fermilab

Let's Consider Limits of Linear *e+e-* Colliders

- Both ILC and CLIC offer staged approach to ultimate *E*
- The limits are set by:
 - Cost
 - Site power requirements Total length Beamstrahlung

5/10/2019

Circular *pp* **Colliders**

HE-LHC CDR (2018) FCC-hh CDR (2018)

Key facts:

Large tunnel

HE-LHC / FCC-hh* / SppC*

- 27 / 100 / 100 km
- SC magnets 16 / 16 / 12 T
- High Lumi & pileup *O*(10³⁵), *O*(500) Site power (MW) – 200 / 500? / ?

* follow up after e+e- Higgs factories

Strategic R&D Ahead :

- High field dipoles:
 - Nb3Sn 16 T / iron-based 12 T, wire
 - (see also Akira's talk)
- Intercept of synchr radiation :
 - 5 MW FCC-hh / 1 MW CepC
- Collimation :

- x7 LHC circulating beam power
- Optimal injector:
 - 1.3TeV scSPS, 3.3 TeV in LHC/FCC
- Overall machine design :
 - IRs, pileup, vacuum, etc
 - Power and cost reduction

HTC Superconducting Cables

- Huge impact If magnet can be used at ~ 4.5K 20 K
- Fe-based HTC cable
 - · Metal, easy to process; Isotropic; Cheap in principle
- Background in CAS
 - World highest Tc Fe-based materials
 - World first ~ 115 m Fe-based SC cables: 12000 A/cm² @ 10 T
- A collaboration on "HTC SC materials" : Institute of Physics, USTC, Institute of electric engineering, IHEP, 3 SC cable companies in China
 - Iron based HTC cables
 - ReBCO & Bi-2212
 - Goal: ~ 3-5 \$ /kA·m
 - Current density: × 10
 - Cost/m: ÷10

High Energy $\mu + \mu$ - Colliders

Advantages:

- µ's do not radiate / no beamstrahlung → acceleration in rings → *low cost* & great power efficiency
- ~ x7 energy reach vs pp
- Offer "moderately conservative moderately innovative" path to cost affordable energy frontier colliders:

• ZDRs exist for 1.5 TeV, 3 TeV, 6 TeV and 14 TeV * in the LHC tunnel * more like "strawman" parameter table

Key to success:

- Test facility to demonstrate performance implications muon production and 6D cooling, study LEMMA e^+-45 GeV + e^- at rest $\rightarrow \mu^+-\mu^-$, design study
- of acceleration, detector background and neutrino radiation

7-10 YEARS FROM NOW WITH PROPOSED ACTIONS / R&D DONE / TECHNICALLY LIMITED

• *ILC:*

- Some change in cost (~6-10%)
- All agreements by 2024, then
- **Construction** (2024-2033)

• CLIC:

- TDR & preconstr. ~2020-26
- **Construction** (2026-2032)
- 2 yrs of commissioning

• CepC:

- Some change in cost & power
- TDR and R&D (2018-2022)
- **Construction** (2022-2030)

FCC-ee:

- Some change in cost & power
- **Preparations** 2020-2029
- Construction 2029-2039
- HE-LHC:
 - **R&D and prepar'ns** 2020-2035
 - Construction 2036-2042
- FCC-hh (w/o FCC-ee stage):
 - 16T magnet prototype 2027
 - Construction 2029-2043
- μ⁺-μ⁻ Collider :
 - CDR completed 2027, cost known
 - Test facility constructed 2027
 - Tests and TDR 2028-2035
 Eermilab

Summary

- The world needs electron/positron Higgs factories, to profoundly understood the nature of the Higgs boson and the SM.
- Four electron positron Higgs factories, 2 linear and 2 circular are proposed, and significant progress have been made in the R&D: ready to be build.
- The Chinese High Energy Physics Community takes initiative on the CEPC project and other electron positron Higgs factories
 - The CEPC is the first Chinese efforts for a HEP Science project of this scale -> challenges everywhere
 - Tremendous progress made, and still long way to go
 - CEPC CDR released in Nov 2018: entering TDR phase
 - Lots of Critical progress delivered & aiming at the first collision ~ 2030
 - Giving the importance of electron positron Higgs factory, we hope at least one of them (FCC, ILC, CLIC, and CEPC) can be realized
 - We fully support these global efforts, even it is not build in China.

FPCP@Victoria, BC

43

🗲 Fermilab

5/05/2019

Summary – cont'd (VS):

- Remarkable progress of the projects/proposals/technologies:
 - esp. ILC, CLIC, FCC-ee, -hh, CepC, μ-Colliders, plasma, ...
 - allow in-depth evaluation of readiness, power and costs
- Higgs Factories Implementation :
 - several feasible options on the table
 - the choice might define high-energy future collider choice
- Highest Energy Future Colliders:
 - demand very high AC power & cost; some options to save
 - each machine has a set of key R&D items for next 7-10 yrs
 - core acceleration technology R&D SC magnets, SRF and plasma – are of general importance and help all - pp/ee/μμ
- We also expect to gain valuable experience from the machines to be built and operated over the next decade
 - SuperKEKB, HL-LHC, NICA, PIP-II, ESS, EIC, Super C-Tau, etc.