

Canada's national centre for particle and nuclear physics and accelerator-based science

Project Introduction and Current Status of ARIEL

Reiner Kruecken Deputy Director

January 11, 2017

ARIEL – The Advanced Rare Isotope Laboratory – will triple TRIUMF's isotope beam capacity

- Represents ~\$100 million investment by federal and provincial governments; led by UVic and supported by 19 universities across Canada
- ARIEL-I was completed on time and on budget in Fall 2014
- ARIEL-II funding was approved by CFI in May 2015

ARIEL-II has received funding from AB, MB, ON, QC (2015), BC (10/2016)

CFI finalization process currently ongoing

Project will be 6-year project starting shortly

First science from ARIEL Charge Breeder with ISAC beams: 2020

- ARIEL is the highest priority project for TRIUMF
- Goal: Project execution should minimize impact on science delivery

ARIEL I and II

ARIEL-I (2010-2014):

- Civil construction encompassing objectives of both ARIEL-I & II
- Electron linac up to 35 MeV, 100 kW

ARIEL-II (2017-2022):

- Completion and scientific utilization of the ARIEL facility
 - RIB targets & delivery infrastructure
 - New proton beam-line
- Phased approach to bring science online
- Funding approved (C\$37.5M)

ARIEL project components

- ARIEL-I (completed)
- ARIEL 1.5
- CANREB
- VECC MoU3
- ARIEL-II
- Therapeutic Isotopes (P405)

Phase	Major Components	Will deliver isotopes for
1 β-NMR	Electron target for ⁸ Li production, shielding, pre separator, RIB transport to ISAC, hot cells, remote handling	materials science with β-NMR [+ light beams for Fund. Symm. (⁸ Li), Nucl. Astro. (^{10,11} C)]
2 Photofission	Actinide laboratories, Laser Ion source	photo-fission of uranium from e-Linac
3 CANREB	Beam lines to connect HRS, EBIS to ARIEL and ISAC	purified accelerated high mass beams (CANREB), Medical isotopes for imaging & treatment
4 BL4N	Proton beamline BL4N, proton target, RIB transport to ISAC	fundamental Symmetries w/ new proton beamline BL4N → 3 simultaneous RIBs for users
5 HP Converter	50 MeV 500 kW eLinac 500kW HP-converter development	Full exploitation of photo-fission with full power e- Linac

RIUMF

ARIEL Scope changes

ARIEL scope changes:

- postpone 50MeV eLinac \rightarrow limit to E_e = 35 MeV (saturation of fission rate)
- postpone 500kW photo converter

 → limit to P_e ≤ 100 kW (no technology for efficient use of higher power available, shielding designed for 500 kW)

Advanced target design concept:

- mechanical part of target exchange in ≤ 24 h

 → higher productivity (5% overhead instead of 40% @ISAC)
 → target exchange in station not in hot cell
- pre-conditioned hermetic target vessel and target acceptance stand (TISA) to approach 95% target assembly reliability
 - ightarrow higher beam delivery reliability

Main components of CANREB CFI project:

- high resolution mass separator $M/\Delta M = 20,000$ for beams from ISAC and ARIEL
- charge state breeder A/q 5 -7, 100 Hz pulsed, 10-20% efficiency (available 2020 for ISAC beams!)
 - RFQ cooler/buncher
 - EBIS charge state breeder
 - Nier spectrometer for highly charged ions
 - → Cleaner, more intense beams than current ISAC charge breeder
 - RIB beamlines part of ARIEL-II Phase 3 project

HRS magnet poles at Buckley, NZ

RFQ pulsed drift tube

EBIS at MPIK Heidelberg

New Project Proposal for Therapeutic Isotopes

500 MeV – ARIEL/H+

- High activity (GBq), spallation
- Enable radiopharmaceutical development and clinical trials

Future direction: Commercial production

Details in breakout session

Timeline and Status:

- \$9.9M CFI Application submitted (UBC)
- Funding announcement: June 2017
- If successful, roll project into ARIEL-II

ARIEL is divided geographically

Baselined deterministic Schedule

Science enabling milestone	Month/Year	1	
First EEC approved experiments with high-mass accelerated beams from ISAC utilizing the CANREB/ARIEL EBIS charge breeder	10/2020		Higher intensity, cleaner high-mass accelerated beams
First EEC approved beta-NMR experiments with photo-produced ⁸ Li	03/2022		
First EEC approved experiments with photo-fission RIBs from the e- Linac	06/2022		More RIB hours, cleaner n-rich RIBs
First EEC approved experiments with RIBs from ARIEL Proton target	03/2023		3 parallel RIBs

- Dates based on Monte Carlo analysis of schedule
- Current best estimates but with high confidence
- Efforts under way to accelerate schedule

RIB Transport Prototype

Plan view of B2 level "Mass Separator Room)

Assembled & evaluated 2016 Purchase of all RIB Transport components initiated

from proton station

from electron station

RIB hours per year in the ARIEL era

Week	Exchange	
1	ITE	
2	APTW	
3	AETE	
4	ITW	
5	APTW	
6	AETE	
7	ITE	
8	APTW	
9	AETE	
10	ITW	
11	APTW	
Target exchange		

schedule

Target Area	Wks/year	RIB sched	RIB deliv
ITW/ITE	35	3780	3024
APTW	35	3640	2803
AETE	43	4472	3443
Totals			9270

RIB hours per year

ITE/W	APTW	AETE			
12	12	14			
Targets ner vear					

Source: TRI-DN-15-16 ARIEL Operational model (Bob Laxdal)

Electron Target Module Concept

remote clamp for TM disconnect

(outside of tank)

→ Alexander Gottberg

TRIUMF

Spent target disposal strategy

1) Target vessel to storage vault

2) After ~2 yrs, target vessel to hot cell for separation & packaging

3) Packaged waste shipped to Chalk River

- ARIEL-II funding has been approved by CFI and Provinces
- Design and resource planning efforts are in full swing → Eric Guetre
- Schedule for CFI Project ARIEL-II has been baselined
- Budget finalization process with UVic & CFI ongoing
- More details in the forthcoming talks today

Canada's national laboratory for particle and nuclear physics

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f

0 Y