

Canada's National Laboratory for Particle and Nuclear Physics

Science Goals and Priorities

Adam Garnsworthy ARIEL Principal Scientist and TRIUMF Research Scientist

January 11th 2017

ARIEL Town Hall Meeting Vancouver, BC, Canada

ISAC rare isotope facility

Programs in

- Nuclear Structure &
 Dynamics
- Nuclear Astrophysics
- Electroweak Interaction

Studies

- Material Science
- 18 permanent experiments

ISAC rare isotope facility

Isotopes delivered at ISAC (P.Kunz, Updated June 2016)

Target materials: SiC, TiC, NiO, Nb, ZrC, Ta, U Ion sources: Surface, FEBIAD, IG-LIS

ISAC experimental areas

D. L. Cortie, T. Buck, M. H. Dehn, V. L. Karner, R. F. Kiefl, C. D. P. Levy, R. M. L. McFadden, G. D. Morris, I. McKenzie, M. R. Pearson, X. L. Wang, and W. A. MacFarlane

300

 β -NMR was used to study the depth dependence of the Morin spin reorientation transition in α -Fe₂O₃ (hematite). The surface-localized dynamics decay towards the bulk with a characteristic length of 11 nm, indicating the presence of soft surface magnons.

PRL 115, 042501 (2015)

PHYSICAL REVIEW LETTERS

Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model

Goal is the measure parity-violating anapole moments.

Essential to understand all nuclear contributions, such as finite magnetic and charge distributions.

Hyperfine splitting of $7P_{1/2}$ state in Fr isotopes.

 $T_{1/2,\beta}(^{10}C) = 19.3009 \pm 0.0017 \text{ s}$

The most precise (0.009%) superallowed T_{1/2} reported to date!

M.R. Dunlop et al., Phys. Rev. Lett. 116, 172501 (2016)

 $C_{s}/C_{v} = -b_{F}/2 = +0.0009 \pm 0.0011$ (for $C_{s} = C_{s}'$)

M.R. Dunlop et al., Phys. Rev. Lett. 116, 172501 (2016)

For a general C_s and C_s', the β -v angular correlation coefficient from ^{38m}K decay provides an independent constraint:

 $-0.065 \le C_s/C_v, C_s'/C_v \le 0.065$

A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005)

GRIFFIN: ^{128,129,130}Cd β-decay

M. Mumpower et al., Prog.Part.Nucl.Phys. 86, 86 (2016)

ISAC experimental areas

Successful program at DRAGON

7 RIB 10 Stable beam

Reaction	Motivation	Intensity (s ⁻¹)	Purity (beam:cont.)
²¹ Na(<i>p,γ</i>) ²² Mg	1.275 MeV line emission in ONe novae	5 x 10 ⁹	100%
¹² C(<i>α,γ</i>) ¹⁶ O	Helium burning in red giants	6 x 10 ¹¹	
^{26g} Al(<i>p,γ</i>) ²⁷ Si	Nova contribution to galactic ²⁶ Al	3 x 10 ⁹	30,000:1
¹² C(¹² C,γ) ²⁴ Mg	Nuclear cluster models	3 x 10 ¹¹	
⁴⁰ Ca(<i>α,γ</i>) ⁴⁴ Ti	Production of ⁴⁴ Ti in SNII	3 x 10 ¹¹	10,000:1 - 200:1
²³ Mg(<i>p,γ</i>) ²⁴ Al	1.275 MeV line emission in ONe novae	5 x 10 ⁷	1:20 - 1:1,000
¹⁷ Ο(<i>α,γ</i>) ²¹ Ne	Neutron poison in massive stars	1 x 10 ¹²	
¹⁸ F(<i>p,γ</i>) ¹⁹ Ne	511 keV line emission in ONe novae	2 x 10 ⁶	100:1
³³ S(<i>p,γ</i>) ³⁴ Cl	S isotopic ratios in nova grains	1 x 10 ¹⁰	
¹⁶ Ο(<i>α,γ</i>) ²⁰ Ne	Stellar helium burning	1 x 10 ¹²	
¹⁷ Ο(<i>p,γ</i>) ¹⁸ F	Explosive hydrogen burning in novae	1 x 10 ¹²	
³ He(<i>α,γ</i>) ⁷ Be	Solar neutrino spectrum	5 x 10 ¹¹	
⁵⁸ Ni(<i>p,γ</i>) ⁵⁹ Cu	High mass tests (p-process, XRB)	6 x 10 ⁹	
^{26m} Al(<i>p,γ</i>) ²⁷ Si	SNII contribution to galactic ²⁶ Al	2 x 10 ⁵	1:10,000
³⁸ K(<i>p,γ</i>) ³⁹ Ca	Ca/K/Ar production in novae	2 x 10 ⁷	1:1
¹⁹ Ne(<i>p,γ</i>) ²⁰ Na	¹⁹ F abundance in nova ejecta	2 x 10 ⁷	1:1 to 4:1
²² Ne(<i>p,γ</i>) ²³ Na	NeNa cycle; explosive H burning in classical novae	2 x 10 ¹²	

PRL 116, 132701 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 APRIL 2016

Direct Measurement of the Astrophysical ${}^{38}K(p,\gamma){}^{39}Ca$ Reaction and Its Influence on the Production of Nuclides toward the End Point of Nova Nucleosynthesis

First experimental measurement of this reaction rate.

Constrains the rate of ³⁸K(p,γ)³⁹Ca in ONe nova and significantly reduces uncertainty in ³⁸Ar and ⁴⁰Ca abundances.

DRAGON: ${}^{38}K(p,\gamma){}^{39}Ca$

First charge-bred beam to DRAGON. Heaviest RIB direct radiative capture measurement.

ISAC experimental areas

TIGRESS + auxiliary detectors

High-energy RIBs > 6 AMeV

EMMA (2016) Mass analyzer for nuclear reactions

HPGe y-ray spectrometer in-beam spectroscopy of nuclear reactions

TUDA Scattering array for direct reactions

IRIS Solid hydrogen target for direct nuclear reactions

PRL 114, 192502 (2015)

PHYSICAL REVIEW LETTERS

Evidence of Soft Dipole Resonance in ¹¹Li with Isoscalar Character

R. Kanungo, A. Sanetullaev et al.

First evidence of a dipole resonance in ¹¹Li having an isoscaler character.

Provides stringent tests of *ab initio* theories and nuclear forces.

IRIS: d(¹¹Li,d')¹¹Li'

RIUMF

TIGRESS Integrated Plunger

EMMA has been commissioned!

Position Spectrum (No Cuts)

Position Spectrum (w/ Silicon Trigger)

Beam suppression >10¹²

Experimental facilities and programs of ISAC

Cvclotron

Isotope Separator and ACcelerator

1 RIB delivery to experiments 500MeV p⁺ at 100μA on ISOL target

> SiC, NiO, Nb, ZrC, Ta, UC_x Targets Surface, FEBIAD, IG-LIS ion sources

ISAC-I Low-Energy <60keV Ground state + decay, material science ISAC-I Medium E <1.5MeV/u Astrophysics ISAC-II SC LINAC <10MeV/u Nuclear reactions and structure

TRIUMF-ARIEL

Advanced Rare-IsotopE Laboratory

1 RIB → 3 simultaneous RIBs

ARIEL Project:

- new electron linac driver for photo-fission
- new proton beamline
- new target stations and front end

E-linac and electron beamline Sept. 2014

ARIEL Completion to Science

Impact on accelerated beam program, primarily ISAC-II

IRIS TIGRESS **TUDA-II**

DRAGON TUDA-I

ISAC-CANREB-ISAC beams

Existing ISAC ECR CSB:

Modified 14.5 GHz PHOENIX ECR ion source from Pantechnik

Inject 1+ ions, extract n+ ions

Reduces A/q from <238 to <30 (7) for acceptance into RFQ (MEBT)

Advantages:

- -Continuous output (DC beam)
- -High intensity capability
- -No pre-bunching/cooling required

Issues:

- -Efficiency <5%
- -Stable backgrounds at all A/q

RTRIUMF

ISAC-CANREB-ISAC beams

Stage 1:

CSB-LEBT-RFQ-MEBT-DTL

- Time-of-flight separation in LEBT
- Pre-buncher phase used to tune for selection
- Prague Diagnostic station used for setup
- Theoretical: 1/1000 resolution in A/q

Stage 2 (**NOT ALWAYS REQUIRED**): DSB-SCLINAC-SEBT-Experiment

• Stripping foil at 1.5MeV/u

- Change in A/q and differential TOF
- DSB slits used for selection
- TBragg detector used for setup
- Theoretical: 1/800 resolution in A/q

ISAC-CANREB-ISAC beams

Future CANREB EBIS CSB:

Electron-Beam Ion Source built at Max-Plank Institute for Nuclear Physics, Heidelberg

Inject cooled, bunched 1+ ions, extract bunched n+ ions

Reduces A/q from <238 to <30 (7) for acceptance into RFQ (MEBT)

Advantages: -High Efficiency 10-20% -High-purity beams

Issues:

- -Need cooled and bunched injection
- -Pulsed beam extraction

TRIUMF

ISAC-CANREB-ISAC beams

Factor ~100 increase in charge-bred beam intensities.

Opportunities for the accelerated beam program

- Coulex: B(E2) → Quadrupole moment
- Transfer reactions become feasible in some cases where they were not before
- Transfer: state identification → precision

Call to Users: What are the first experiments, science goals and priorities with CANREB charge-bred beams?

In-target production rates [1 kW⁻¹ \cdot s⁻¹]:

from BeO: ⁸Li: 5·10⁹ pps

- β -NMR currently ~6 weeks of ISAC schedule \rightarrow ~3 months of ARIEL beam
- This will not happen instantly. Access still required in ARIEL target hall for installation work
- Low-energy area is poorly laid out. When delivering to β-NMR from ARIEL:
 - cannot deliver to TITAN, Co-liner Laser Spec., OSAKA, MTV
- Increase in beam availability to β-NMR, GRIFFIN, GPS, Francium, DRAGON, ISAC-II

• Low-energy area is poorly laid out.

When delivering to β -NMR from ARIEL:

• cannot deliver to TITAN, Coliner Laser Spec., OSAKA, MTV

ISAC – LEBT GPS, GRIFFIN

ISAC – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ISAC – LEBT Francium

ISAC – LEBT DRAGON, TUDA-I EMMA, IRIS, TIGRESS, TUDA-II

ARIEL – LEBT GPS, GRIFFIN

ISAC – LEBT DRAGON, TUDA-I EMMA, IRIS, TIGRESS, TUDA-II

ARIEL – LEBT GPS, GRIFFIN

ISAC – LEBT DRAGON, TUDA-I EMMA, IRIS, TIGRESS, TUDA-II

ARIEL – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ISAC – LEBT DRAGON, TUDA-I EMMA, IRIS, TIGRESS, TUDA-II

ARIEL – LEBT Francium

ISAC – LEBT GPS, GRIFFIN

ARIEL – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ARIEL – LEBT Francium

ARIEL – LEBT GPS, GRIFFIN

ISAC – LEBT Francium

ARIEL – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ISAC – LEBT Francium

ARIEL – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ISAC – MEBT DRAGON, TUDA-I

ARIEL – LEBT TITAN, Laser Spec., beta-NMR, OSAKA, MTV

ARIEL –SEBT EMMA, IRIS, TIGRESS, TUDA-II

In-target production rates $[1 \text{ kW}^{-1} \cdot \text{s}^{-1}]$:

from BeO: ⁸Li: 5·10⁹ pps

- β -NMR currently ~6 weeks of ISAC schedule \rightarrow ~3 months of ARIEL beam
- This will not happen instantly. Access still required in ARIEL target hall for installation work
- Low-energy area is poorly laid out. When delivering to β-NMR from ARIEL:
 - cannot deliver to TITAN, Co-liner Laser Spec., OSAKA, MTV
- Increase in beam availability to β-NMR, GRIFFIN, GPS, Francium, DRAGON, ISAC-II

Call to Users: What are the first experiments, science goals and priorities for material science with β-NMR?

ARIEL photo-fission beams to ISAC

FLUKA Production Map from 35 MeV Electrons

Nb

Mo Tc Ru -Rh

> Pd Aa

Cd Sn

Sb — Те

Ba

La

Ce Pr

Nd

Pm Sm

-Eu

ĭb≊

ARIEL Current Concept Design In-Target Production Yields [10 kW⁻¹·s⁻¹]

[10 kW ⁻¹ · s ⁻¹]:	[10 kW ⁻¹ · s ⁻¹]:				
from BeO:					
⁸ Li: 5·10 ¹⁰	500MeV Protons on				
from UC _x :	UC _x :				
⁷⁸ Ni: 1·10 ⁵	⁷⁸ Ni: 2·10 ⁶				
⁹⁸ Kr: 8·10 ⁷	⁹⁸ Kr: 1·10 ⁸				
¹⁰⁰ Rb: 1·10 ⁸	¹⁰⁰ Rb: 9·10 ⁷				
⁹⁸ Sr: 5·10 ⁹	⁹⁸ Sr: 1.10 ¹⁰				
¹³² Sn: 5·10 ⁸	¹³² Sn: 5·10 ⁹				
¹⁴⁶ Xe: 2·10 ⁷	¹⁴⁶ Xe: 1·10 ⁷				
¹⁴⁴ Ba: 5·10 ⁹	¹⁴⁴ Ba: 2·10 ¹⁰				
¹⁵⁰ Cs: 4·10 ⁵	¹⁵⁰ Cs: 5·10 ⁵				

In-target production rates

FLUKA: A. Gottberg (TRIUMF and results verified independently with GEANT4 (Marla Cervantes Smith, University of Victoria)

ARIEL photo-fission beams to ISAC

¹⁴⁴Ba is doubly-magic for octupole deformation; Z=56, N=88.
500MeV protons: 2x10¹⁰ with 3x10⁹ Nd (and Ce, Pr, Pm, Sm, Eu, Gd etc)
10kW electrons: 5x10⁹ with zero Nd

ARIEL photo-fission beams to ISAC

Beams from electron-induced photofission of UC_x

- Intense, clean neutron-rich beams
- Lots of interesting physics: r-process, shell structure, quadrupole deformation, collectivity, Octupole deformation, phase transitions

Photo-fission of UCx

Call to Users:

What are the first experiments, science goals and priorities with beams from photo-fission?

- More beamtime availability with 3 simultaneous beams.
- More time available for beam development activities.
- Astrophysics longer beamtimes means more precision and more complete studies
- Fundamental symmetries longer beamtimes enable precision measurements

- Opportunities limited without a Medium Resolution Separator (MRS), in most cases only 2 beams can be utilized simultaneously. IG-LIS beams may be ok.
- Opportunities limited by only one RFQ-DTL, can only deliver to either medium or highenergy area.

Longer beamtimes means more precision and more complete studies

J.M. D'Auria et al., PRC 69, 065803 (2004).

TABLE I. ²¹Na(p, γ)²²Mg resonance strengths and energies.

E_x (MeV)	$E_{\rm c.m.}$ (keV)	Γ (keV)	$\omega\gamma$ (meV)
5.714	205.7±0.5		1.03 ± 0.21
5.837	329		≤0.29
5.962	454±5		0.86±0.29
6.046	538 ± 13		11.5 ± 1.36
6.246	738.4 ± 1.0		219 ± 25
6.329	821.3 ± 0.9	16.1 ± 2.8	556±77
6.609	1101.1 ± 2.5	30.1 ± 6.5	368 ± 62

Limited beamtime usually results in only the strongest resonances being studied introducing significant uncertainty to the final reaction rate calculations. Longer beamtimes enables time-consuming precision measurements

Atomic Parity Violation measurements in Fr to put constraints on weak electron-quark couplings.

Androic et al., PRL 111, 141803 (2013).

- More beamtime availability with 3 simultaneous beams.
- More time available for beam development activities.
- Astrophysics longer beamtimes means more precision and more complete studies
- Fundamental symmetries longer beamtimes enable precision measurements
- Opportunities limited without a MRS, in most cases only 2 beams can be utilized simultaneously unless IG-LIS is used.
- Opportunities limited by only one RFQ-DTL, can only deliver to medium or high-energy area.

Call to Users: What are the first experiments, science goals and priorities when 3 simultaneous beams are available?

- Medium-Resolution Separator
- 2nd RFQ-DTL accelerator path
- New ISAC frontend
- 50MeV eLINAC
- 500kW converter development
- Re-circulation ring

- Storage ring
- HELIOS-type device
- Total-Absorption Spectrometer
- ...

User consultation in the summer as part of next TRIUMF 5-year planning process. Starting thinking about this.

The Future: Science enabled by ARIEL

=0

Actinide proton beam-line:

High intensity, clean beams for electroweak precision experiments using hundreds of days of beam per year - Francium PNC

- Atomic EDM in Rn

N

Proton number

- Electron EDM using Fr fountain

ADVANCED RARE ISOTOPE LABORATORY

Multi-user operations:

- More beam time for
- - Beam development
 - Nuclear astrophysics
 - Precision experiments

20^{28} 20^{28} 20^{28} 20^{28} 20^{28} 20^{28} 20^{28} 30^{28} 20^{28} 30^{28} 20^{28} 30^{28}

e-linac and photo-fission

Delineating the r-process path with fission fragment beams from the e-linac

- masses, charge radii, decay properties
- transfer reactions mapping shell structure

26

- studies of neutron capture and photo dissociation rates

Call to Users: Please help define the science goals and priorities for the different stages of ARIEL:

- More intense, cleaner accelerated beams from ISAC-CANREB-ISAC,
- Increase in polarized Li beam availability to beta-NMR, OSAKA, MTV
- Beams from electron-induced Photo-fission of UC_x,
- when 3 simultaneous beams are available.

What are the priorities for future upgrades and installations?

Any other suggestions please.

Canada's national laboratory for particle and nuclear physics

Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | McGill | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f

0 M