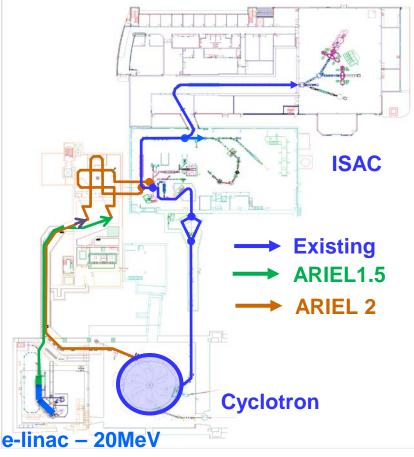


Canada's national laboratory for particle and nuclear physics and accelerator-based science


Operational model and operations ramp-up for ARIEL

Bob Laxdal

ARIEL Town Hall, Jan. 11, 2017

Advanced Rare IsotopE Laboratory

Completing & operating ARIEL is central to realizing the laboratory vision:

•ARIEL will **triple** our RIB output as we bring on-line a second (AETE) and third (APTW) target area to complement the existing ISAC (ITW/ITE) target area

•The scheduling and beam delivery of three RIBs simultaneously will challenge operations and technical support

•An operation model for ARIEL/ ISAC/ TRIUMF has been developed to help optimize the efficiency and the personnel required

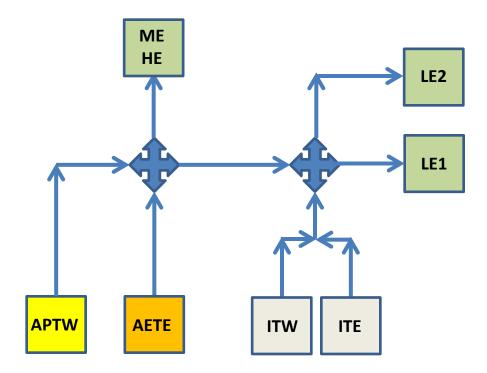
•High reliability is critical as we move towards the ARIEL era

1/11/2017

Operational Model

- What do we mean by "operation model"?
 - Overall scheme for accelerator operations taking into account operational constraints – beam delivery requirements, maintenance, shutdown, target exchanges, conditioning and startup, tuning, experimental needs, ...
- Why do we need one?
 - ARIEL will provide the infrastructure to allow the delivery of three RIB simultaneously
 - An operation model will help determine infrastructure and resource requirements and experimental output

ITE	Su		Mo		Tu		We		Th		Fr		Sa	
Week	AM	PM	AM	РМ	AM	PM	АМ	PM	AM	РМ	AM	PM	AM	PM
1	Conditionin	g on-line wi	thout beam				•	•						
2	Conditionin	g on-line wi	thout beam											
3	Conditionin	g on-line wi	thout beam								Maint.	Start		Yield
4	Production	(βNMR)			Beam dev.	Production	(βNMR)						RIB deve	opment
5	RIB develop	ment			Maint.	RIB develop	oment				Production	n (S1545)		
6	Production	(\$1545)		Production	(BNMR)		Maint.	Production	(BNMR)					Prod.
7	Prod. (Ops t	training)	Shields	Cooldown										
8	Cooldown				Tar-> HC	Target ex.	Conditionin	g station						
9	Conditionin	g station			Tar-> ITE	Conditionin	ng on-line wit	hout beam						
10	Conditionin	g on-line wi	thout beam											
11	Cond. w/o l	beam	Maint.	Start	Maint.	Yield	Production	(S1457)			Production	n (S1466)		
12	Production	(S1466)			Maint.	Prod.	RIB develop	ment		Production	(\$1502)			
TW	Su		Mo		Tu		We		Th		Fr		Sa	
Week	AM	PM	AM	РМ	AM	РМ	АМ	РМ	AM	РМ	AM	РМ	AM	PM
1	Conditionin	g on-line wi	th/without	beam	Start				RIB develo	pment		Production	n (S1578)	
2	Production	(S1578)			Beam dev.	RIB develop	oment	Production	(L112)		Production	n (S1218)		
3	Production	(1112/1122)			Maint.	Production	(1112)	Production	(Ons trainin	ng)	Shields	Cooldown		
4	Cooldown													
5	Cooldown				Tar-> HC	Target exch	nange		Conditioni	ng station				
6	Conditionin	g station					Tar-> ITW	Condition o	on-line with	out beam				


6	Conditioning station					liar-> liw	Condition on-line without beam		
7	Cond. w/o beam	Maint.	Start	Beam dev.	Start	Yield	RIB development		
8	RIB development	Production		Maint.	Production	(βNMR)			
9	Production (βNMR)			Maint.			Production (βNMR)	RIB development	
10	RIB development			Beam dev	RIB develor	ment			Prod. (Ops training)
11	Prod. (Ons training)	Shields	Cooldown						
12	Cooldown			Tar-> HC	Target ex.	Conditionin	g station		

- Operating schedules reflect demand for specific beams
 - Startup, operating lifetimes vary from target to target
 - Maintenance and development (RIB and cyclotron) vary from week to week
 - Schedule makeup number of targets, etc. varies from year to year
- No rhythm, but a measure of flexibility
 - Delivery may be rescheduled in the event of target or equipment failures
- Doesn't scale well to multiple simultaneous RIB

- Three RIB sources
 - 1 ISAC, 2 ARIEL
- Three experimental areas
 2 LE, 1 ME/HE
- One path from ARIEL to ISAC LE
 - All ME/HE beams will come from ARIEL when delivering three RIB simultaneously
- ARIEL and ISAC schedules need to align

- ISAC and ARIEL share the same beamlines and experimental areas
 - Schedules are intertwined and highly constrained
- Solution: An assembly-line approach
 - Standardized target cycles and lifetimes
 - Regular maintenance and development periods
 - Frequent target changes to reduce impact of failures
 - Balanced resource loads personnel and equipment
- Maintaining the target cycle becomes a higher priority than maintaining flexibility

- Assume fixed target cycles:
 - ISAC:
 - Six weeks three with ITE (ISAC Target East), three with ITW (West)
 - ARIEL:
 - Three weeks for each of AETE (ARIEL Electron Target East) and APTW (Proton Target West)
- Target startups are staggered so as not to overlap – one new target per week

Week	Exchange
1	ITE
2	APTW
3	AETE
4	ITW
5	APTW
6	AETE
7	ITE
8	APTW
9	AETE
10	ITW
11	APTW

Week by week target exchange schedule

- With fixed target cycles, fixed driver schedules Cyclotron:
 - 12 hours for maintenance every Tuesday may be shorter if maintenance needs allow
 - 24 hours for beam development every third Monday, coinciding with APTW target change
 - A 36-hour cryopanel defrost (I1 filament change) every ninth Monday, superseding beam development

	Target	Su				Tu		We		Th		Fr		Sa	
Week	Exchange	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
1	ITE					Maint.									
2	APTW			Beam Develop	oment	Maint.									
3	AETE					Maint.									
4	ITW					Maint.									
5	APTW			Beam Develop	oment	Maint.									
6	AETE					Maint.									
7	ITE					Maint.									
8	APTW			Maint.	Maint.	Maint.									
9	AETE					Maint.									
10	ITW					Maint.									
11	APTW			Beam Develop	oment	Maint.									

- With fixed target cycles, fixed driver schedules e-Linac
 - 12 hours for maintenance or development every Tuesday, coinciding with cyclotron maintenance
 - An additional 24 hours for maintenance or development every third Monday, coinciding with AETE target change
 - Maintenance and development on an as-needed basis

	Target	Su		Мо		Tu		We		Th		Fr		Sa	
Week	Exchange	AM	PM	AM	PM	AM	PM	AM	РМ	AM	PM	AM	PM	AM	PM
1	ITE					Main/Dev									
2	APTW					Main/Dev									
3	AETE			Main/Dev	Main/Dev										
4	ITW					Main/Dev									
5	APTW					Main/Dev									
6	AETE			Main/Dev	Main/Dev	Main/Dev									
7	ITE					Main/Dev									
8	APTW					Main/Dev									
9	AETE			Main/Dev	Main/Dev	Main/Dev									
10	ITW					Main/Dev									
11	APTW					Main/Dev									

ITE/ITW Schedules

ITE	Su	1	Мо		Tu		We	1	Th	1	Fr	1	Sa				
			-			D14											
Week	AIM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM			
1	Condition	on-line w	ithout bea	m	Maint.	Condition	-beam	Start	Yield	Productio	n						
2	Productio	n	Beam dev	/Maint	Maint.	TDS	Production	า									
3	Productio	n			Maint.	Productio	n										
4	Productio	'n			Shields	Cooldowr	1										
5	Cooldowr	1			Tar-> HC		Tar. X Conditioning station										
6	Condition	onditioning station				Condition	on-line wi	thout bear	eam								
7	Condition	ondition without beam			Maint.	Condition	Condition-beam Start Yield Production										
ITW	Su		Мо		Tu		We		Th		Fr		Sa				
Week	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM			
1	Productio	n			Shields	Cooldowr	1										
2	Cooldowr	1			T> HC>X		Tar. X		Condition	ning station	า						
3	Condition	ing statior	า		Cond->Tai	Condition	on-line wi	thout bear	n								
4	Condition	Condition on-line without beam			Maint.	Condition-beam Start Yield Production											
5	Production Beam dev/Maint				Maint.	TDS Production											
6	Productio	n			Maint.	Productio	n										
7	Productio	n			Shields	ls Cooldown											

- ISAC operation alternates between ITE/ITW target stations
- Target changes are carried out while the other target station is producing
- Target start-ups are standardized with shifts dedicated for conditioning, start-up, yield and RIB development

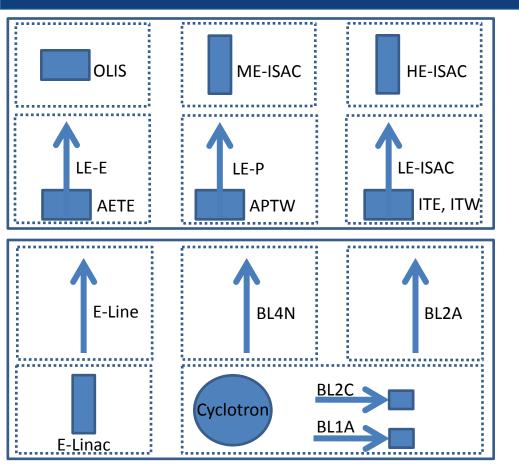
1/11/2017

ARIEL Town Hall

ARIEL Stations – AETE/APTW

APTW	Su		Мо		Tu		We	1	Th		Fr		Sa		
Week	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
1	Productio	n			Maint.	Productio	'n								
2	Productio	Cooldown	Tar. X		Tar. X	-	Cond-bear	n	Start	Yield	Producti	on			
3	Productio	n			Maint.	TDS	Production	า							
4	Productio	n			Maint.	Productio	'n								
5	Productio	Cooldowr	Tar. X		Tar. X		Cond-bear	n	Start	Yield	Producti	on			
6	Productio				Maint.	TDS	Production								
7	Productio	n			Maint.	Productio	'n	-							
AETE	Su		Mo		Tu		We								
Week	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
1	Productio	n			Maint.	TDS									
2	Productio	n			Maint.	Productio	n			_	_				
3	Productio	Cooldowr	Tar. X		Tar. X		Cond-bear	n	Start	Yield	Producti	on			
4	Productio	Production			Maint.	TDS									
5	Production				Maint.	Productio	n			_	-				
6	Productio Cooldown Tar. X				Tar. X		Cond-beam Start Yield Production								
7	Production				Maint.	TDS									

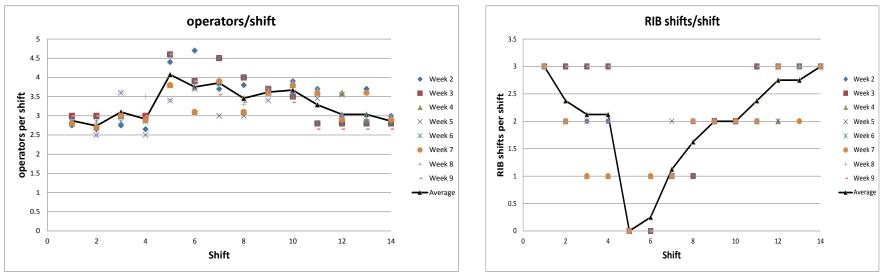
- Both stations operate in parallel
- Target changes require interrupting RIB production goal is to exchange target within 5-day work week
- Target start-ups are standardized with shifts dedicated for conditioning, start-up yield
 and RIB development
 ARIEL Town Hall
 13



Estimating RIB Hours

- Draft target cycles allow topdown estimates of RIB availability over a three-week period
- These can be extrapolated to full-year operation
- Assume standard overheads, procedures and reliability values
- Result: 9270 hrs/year

	<u> </u>		
	ITE/ITW	AETE	APTW
Total shifts	42	42	42
Cooldown	0	-1	-1
Target exchange	0	-4	-4
On-line conditioning	-2	-2	-2
Maintenance/driver dev.	-5	-2	-2
Startup	-1	-1	-1
Yield	-1	-1	-1
Target development	-1	-1	-1
Shifts available	32	30	30
LE exp'ts (number)	4.6	2	2
HE exp'ts (number)		1.8	1.8
Procedures	-5	-4	-4
RIB shifts/3 weeks	27	26	26
RIB hours/3 weeks	324	312	312
RIB hours/35 weeks	3780		3640
RIB hours/43 weeks		4472	
RIB hrs. w. reliability	3024	3443	2803



Assumptions:

- The complex is operated (initially) from two controls rooms ; the main control room (MCR) and the ISAC Control Room (ICR) – planning is in place for a new TRIUMF Control Centre (TCC)
- The MCR oversees the drivers (cyclotron and e-Linac) and the high intensity beamlines
- The ICR oversees operations of the target areas (ITE/ITW, AETE, APTW), all LE beamlines in ARIEL and ISAC, and the ISAC post-accelerator
- The eventual goal is to operate all facilities from a common control room

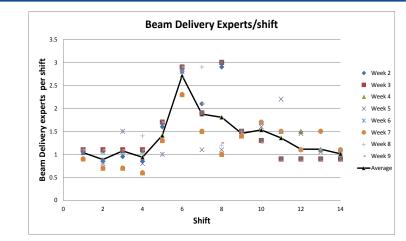
- Consider a nine-week strawman schedule choose a realistic distribution of run lengths
 - Use two operators for base (one for MCR and one for ICR)
 - Add estimated operators needed for various activities
 - Estimations suggest 3 in MCR and 3 in ICR with expert support
 - In a unified TCC we estimate that 5 operators would be required

1/11/2017

ARIEL Town Hall

Strawman Schedule RIB hours

	Su Pr			Т	u M Pi	N A	/e P	T A		Fr	M PI	Sa M A				1				
Cyclotron e-Linac	0.1 0.1	0.1 0.1	0.1	0.1 0.1	0.3 0.3	0.2 0.2	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	Colour Code	Weeks		35	35	43
1 ITW	0.2	0.2	0.2	0.2	0.6	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	move shield					
ITE							0.8	0.1	0.1	0.1	0.1	0.1	0.8	0.1	Cooldown			ITE/ITW	APTW	AETE
APTW AETE							0.4	0.4	0.1	0.1	0.85	0.1	0.25	0.25	Driver tuning	Tot shifts	1021	319	315	387
2 ITW	2.2	2.2	2.2	2.2	2.6 0.1	2.4	4.6 0.2	2.8 0.2	3.3 0.2	3.5 0.2	3.35 0.2	2.75 0.2	3.45 0.2	2.75 0.2	Target to Hot Cell					
ITE APTW	0.1 0.25	0.1 0.25	0.1 0.25	0.1 0.25	0.3	0.8	0.1 0.8	0.1 0.9	0.1	0.1	0.1	0.1	0.8	0.1	Maintenance	LE shifts	635	319	206	110
AETE OLIS	0.1	0	0.1	0	0.1	0	0.4	0.4	0.8	1	0.8	0.1	0.1	0.1	target exchange	ME shifts	113	0	27	86
	2.75	2.65	2.75	2.65	4.4	3.7	4.7	3.8	3.7	3.9	3.7	3	3.7	3	hot cell to target		115		27	00
3 ITW ITE	0.2	0.2	0.2	0.2	0.3	0.4	0.4	0.8	1	0.8	0.1	0.1	0.1	0.1	condition	HE shifts	273	0	82	191
APTW AETE	0.4	0.4 0.1	0.4 0.1	0.4	0.3	0.8	0.1 0.8	0.1 0.9	0.1	0.1	0.1	0.1	0.1	0.1	condition w beam					
OLIS					1	0.5	1			0.4				0.4	operate LE	-				
4 ITW	3	3 0.1	3 0.3	3 0.3	4.6 0.3	3.9 0.3	4.5 0.8	4	3.7 0.1	3.5 0.1	2.8 0.1	2.8 0.8	2.8 0.1	2.8 0.1	operate ME	Exp total	119	54	31	33
ITE APTW	0 0.1	0	0 0.1	0	0.1 0.1	0	0.1 0.4	0.4	0.1 0.8	0.1	0.1 0.8	0.1	0.1 0.1	0.1 0.1		- · · · · · · · · · · · · · · · · · · ·				
AETE	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.8	0.4	0.8	0.4	0.4	0.4	operate HE	LE exp	88	54	19	14
OLIS	2.8	2.7	3	2.9	0.4	3.1	3.9	3.1	3.6	3.8	3.6	3.6	2.9	2.9	cyclotron	ME exp	13	0	1	10
5 ITW ITE	0.1	0.1	0.1	0.1	0.3 0.1	0.8	0.1	0.1	0.1	0.1	0.1	0.8	0.1	0.1	e-Linac	IVIE exp	15	0	4	10
APTW	0.1	0.1	0.1	0.1	0.3	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	OLIS pre-tune	HE exp	17	0	8	10
AETE OLIS	0.4	0	0.1 1	0	0.1	0	0.4	0.4	0.8	1	0.85	0.25	0.25	0.25	LE tuning					
6 ITW	2.9 0.1	2.5	3.6 0.1	2.5	3.4 0.3	3.7	3	3	3.4	3.6	3.45	3.55	2.85	2.85	ME tuning					
ITE	0.2	0.2	0.2	0.2	0.1	0.4	0.4	0.8	1	0.8	0.1	0.1	0.1	0.1	HE tuning	Total hrs	12251	3827	3780	4644
APTW AETE	0.1	0.1	0.1	0.1	0.3	0.8	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Yield					
OLIS	2.85	2.85	2.85	2.85	1 4.6	3.9	1 4.5	4	3.7	3.5	2.8	2.8	2.8	2.8	Beam dev	LE hrs	7619	3827	2473	1319
7 ITW	0	0	0	0	0.1	0	0.1	0	0.1	0.1	0.1	0.1	0.1	0.1	cond-stat	ME hrs	1359	0	327	1032
ITE APTW	0.1	0.1	0.3	0.3	0.3	0.3	0.8	0.1 0.4	0.1 0.8	0.1	0.1	0.1 0.1	0.8 0.1	0.1						
AETE OLIS	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	TDS	HE hrs	3273	0	980	2293
	2.8	2.7	3	2.9	3.8	3.1	3.9	3.1	3.6	3.8	3.6	2.9	3.6	2.9						
8 ITW ITE	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2						
APTW AETE	0.1	0.1	0.1	0.1	0.3	0.3	0.9 0.4	0.4 0.4	0.4	0.4	0.4	0.4	0.4	0.4		RIB hrs	9569	3061	2959	3549
OLIS	0.4		1	1						-				0.1						
9 ITW	2.9 0.2	2.5 0.2	3.6 0.2	3.5	3.4 0.3	3.7 0.4	3.8 0.4	3.3 0.8	3.7 1	3.9 0.8	3.7 0.1	3 0.1	3 0.1	3 0.1		LE hrs	6095	3061	1979	1055
ITE APTW	0.1	0.1	0.1	0.1	0.1	0 0.8	0 0.1	0.1	0	0.1	0.1	0 0.1	0.1	0 0.1		ME hrs	1019	0	245	774
AETE	0.1	0.1	0.1	0.1	0.3	0.3	0.85	0.25	0.25	0.25	0.25	0.25	0.25	0.25					-	
OLIS	3	3	3	3	1 4.6	3.9	3.55	3.35	3.55	3.35	2.65	2.65	2.65	2.65		HE hrs	2455	0	735	1720
10 ITW ITE	0.1	0.1	0.3	0.3	0.3	0.3										1		:		
APTW	0.1	0.25	0.1	0.25	0.1	0.8														
AETE OLIS	0.25 2.65	0.25 2.55	0.25 2.85	0.25 2.75	0.3 3.4	3.5														
Average	2.875	2.7375	3.1	2.9125	4.075	3.625	3.98125	3.45625	3.61875	3.66875	3.2875	3.0375	3.0375	2.8625						


Other resources

Existing infrastructure

- ISIS
- Cyclotron
- BL1A, BL2C, BL2A
- ITE/ITW
- LEBT
- OLIS
- RFQ, DTL, ISAC-II
- MEBT, HEBT, DSB, SEBT

Added infrastructure

- E-Linac
- E-Line
- BL4N
- AETE/APTW
- New LEBT

Top down estimate of additional fractional effort required for full ARIEL operation. Need better estimates from parts count, existing time sheets, reliability estimates

Targets	Vacuum	Cryo	RF	Mag HW	DC PS	Diag	Controls	Safety	ΗV	RH	Sources
2.8	0.5	0.3	0.3	0.6	0.5	0.6	0.5	0.8	0.8	1.0	0.8

Table 6: Increased fractional effort over present technical load to operate the full ARIEL.

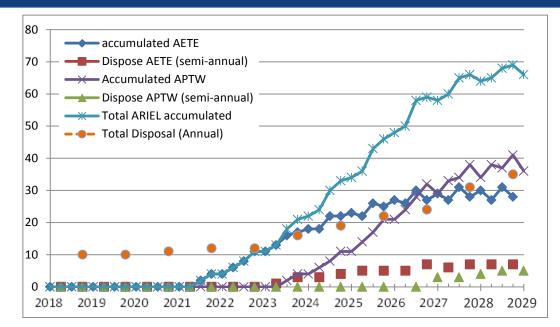
We will have to identify ways to improve efficiencies of target production, beam delivery (HLAs) and reliability to be able to afford to operate ARIEL 1/11/2017 ARIEL Town Hall

Within the Factory paradigm there is still room for some flexibility for targets where a shorter life cycle is preferred

- The fundamental assumption in all schemes is that only one target is started on any given week – flattens manpower load
- For the alternate cycles a two-week cycle would probably be the minimum given the effort and time required to bring a target on-line - For every two-week cycle there would also be a target area with a four-week cycle to maintain the one target per week pace.
- A few of the alternate cycles have been looked at in detail and while they are marginally less efficient than the three-week cycle they still produce more than 9000 hours of RIB per year.

Week	Variant 1	Variant 2	Variant 3	Variant 4
1	AETE	AETE	AETE	AETE
2	ITW	ITW	ITW	ITW
3	APTW	APTW	APTW	APTW
4	AETE	AETE	AETE	AETE
5	ITE	APTW	APTW	APTW
6	APTW	ITE	ITE	ITE
7	AETE	AETE	AETE	AETE
8	ITW	APTW	APTW	APTW
9	APTW	ITW	AETE	ITW
10	AETE	AETE	ITW	AETE
11	ITE	APTW	APTW	ITE
12	APTW	ITE	AETE	APTW
13	AETE	AETE	ITE	AETE
14	ITW	APTW	APTW	ITW
15	APTW	ITW	AETE	APTW
16	AETE	AETE	ITW	AETE
17	ITE	APTW	APTW	ITE

Ramp up

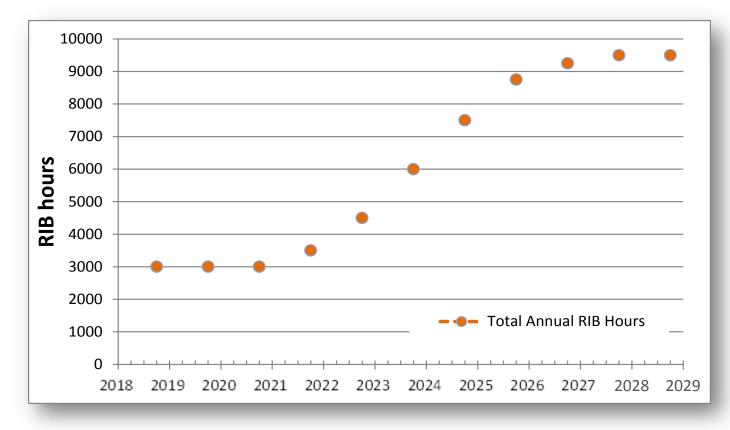

Assumptions:

- ISAC waste disposal will continue as is but with more targets: 12/year vs. 9–10/year now
- ARIEL waste disposal will utilize a new storage vault and hot cell within the ARIEL complex
- ARIEL target bodies will be separated from their canisters after a decay period and prior to packaging for shipping to long-term storage
- Multiple target bodies will be packaged in each shipping flask to reduce cost as allowed by flask shielding capability and target activation

RTRIUMF

Ramp-up Model

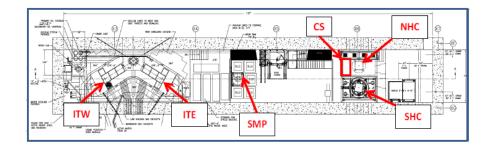
- ISAC:
 - 9-10 targets/yr now
 - 12 targets/yr by 2021
- AETE:
 - 4 targets in 2021
 - 14 targets/yr by 2026
 - 2 yrs storage/target
- APTW:
 - 4 targets in 2023
 - 12 targets/yr by 2027
 - 3.5 yrs storage/target

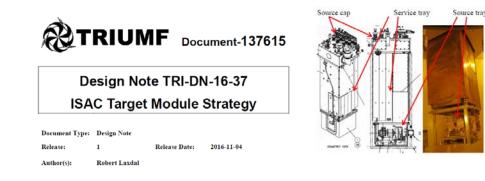

- ARIEL target storage saturates at 68 targets in 2029
- Consistent with a 72-unit decay storage vault

ARIEL Town Hall

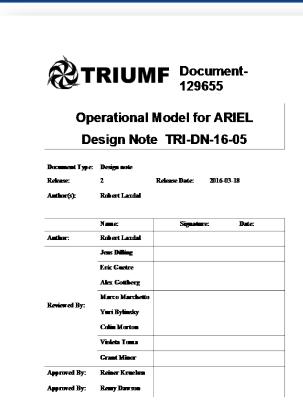
RIBs per year ramp up

The number of RIB hours/year can be estimated based on the ramp up strategy




- What we (think we) know:
 - >9000 hours/year of RIB availability is reasonable
 - Operation can be maintained with 6 operators/shift working out of two control suites
 - Target waste can be managed within the planned infrastructure
- What do we still need?
 - Further work to determine operating costs and the number of technical staff required
 - Ways to improve efficiency (esp. in target production and beam delivery) and reliability
- We have a model that we can use to inform design choices and operational planning.

- A requirement of the Factory approach is that we need a high reliability and efficient target exchange in all target areas
- We must treat ISAC Refurbishing at the same priority as ARIEL
 - ISAC Target Hall upgrade
 - ISAC target module upgrade
- An analysis of the present status was done to help optimize the ISAC target module improvement plan
 - Conclusion we need a new module in the rotation **more in Oliver talk**



- An operation model for TRIUMF with ARIEL/ISAC is being developed
- "RIB Factory" approach:
 - Interleaved three-week target cycles
 - Fixed driver schedules
 - Regular weekly rhythm
 - Resource load balancing
- First order ARIEL ramp up estimated to help inform science potential, operational overhead and waste management requirements

20180420 210500 Template: Document-27706 Rel.3

Page 1 of 27

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f 🖸 🏏