Electron Source Simulations and Lab Plans at CLS

Xavier Stragier

19 March 2024

IR FEL Workshop at TRIUMF

hadian Centre canadi ht de rayonneme urce synchrotron

IR FEL Workshop

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

1) What are the ele Required electron beau (Based on FELIX and Fr	ctron beam proper m properties at the entrance of itz Haber and discussion with Al	erties for an IR FEL: the IR undulators: an Todd)	
From accelerator		To undu	lator
	Micro bunch (single electron bunch in a bunch train)	Macro bunch (1 complete bunch train)	
Length	1-3 ps	10-20 μs	
Charge	100-200 pC	1-5 μC	
Average current	30-200 A	0.1 -0.5 A	
Repetition rate (base frequency)	500 MHz-1 GHz	10 -20 Hz	
Energy	15-50 MeV	15-50 MeV	
Energy spread	0.1-0.3 %	0.1-0.3 %	
Number of single electron bunches	1	10,000-20,000	
Longitudinal emittance	50 keV-psec	-	
Normalized emittance (x,y)	< 20 π mm.mrad	< 20 π mm.mrad	

2) How can CLS assist in designing, simulating and/or testing of the e-source and beamline for IR FEL?

Can help with :

- Electron source and beamline design
- EM simulations of the different components (CST/HFSS/COMSOL)
- Beam dynamics simulations by tracking electron bunch through the complete beamline from source (GPT)
- Optimization of the different components for optimal beam quality
- Installing, testing and operating of the complete setup.

3) CLS lab facility : Electron source lab location at CLS

All 3 bunkers labs are independent accessible of each other at all times!!

Canadian Centre canadien Light de rayonnement Source synchrotron

IR FEL Workshop

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

3) Status of Electron source lab January 2024:

Control room

Still waiting for :

- 1 radiations doors to be installed
- 1 fire safety doors
- Permits from city
- Class 2 radiation lab permit
- Some Infrastructure

→ ESL to be ready by the

Canadian Centre canadien Light de rayonnement Source synchrotron THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

0006

IR FEL Workshop

Bunker with

electron sources:

Can host a few setups.

4) Possible e-sources for IR FEL (to my opinion at this moment)

- 4.1 Thermionic DC source with modulating grid at 500 MHZ 1 GHz
 - → 'Standard' design to play safe (FELIX, Fritz Haber, new LINAC source at CLS)
- 4.2 Thermionic RF source (MAX IV injector for synchrotron)

 \rightarrow Can generate similar bunches, but at higher rep rate (3GHz) and better normalized emittance < 5 μ m.

e-sources with superior beam quality but 'overkill' for an IR FEL (or not???)

• 4.3 DC photo e-source at high repletion rate (>500 MHz), Cornell Type electron source:

→ Problem: complex and big footprint.

 4.4 Thermionic LaB₆/CeB₆ DC e-source in combination with higher harmonics RF cavity to chop and compress the beam

→ Very promising to be cheap, easy, reliable, compact but still in experimental phase.

4.1) Thermionic DC e-source with a modulating grid:

• Felix and Fritz Haber design

CLS source being tested at RI

4.1) Thermionic DC e-source with a modulating grid: Beam dynamics simulations

4.2) Thermionic RF e-source:

Thermionic emitter in a RF cavity with a high electric field strength \rightarrow Already produces separate electron bunches at exit of the e-source.

- Gun adjusted to 2.856 GHz ۲
- 3D model received from MAX lab ٠
- Fields simulated in COMSOL ٠

Stored at CLS

MAXIV

New features of the MAX IV thermionic pre-injector

The design of a 3 GHz thermionic RF-gun and energy filter

for MAX-lab B. Anderberg, A. Andersson, M. Demirkan, M. Eriksson, L. Malmgren, S. Werin*

J. Andersson", D. Olsson", F. Curbis, L. Malmgren, S. Werin

Cross section e-source

Heated to appr. 1100 °C

BaO Emitter

3mm diameter

EM simulations

19 March 2 19 June 202

Canadian Centre canadien Light de rayonnement sunchrotron OUPCI

The design of a 3 GHz thermionic RF-gun and energy filter NADA | lightsource.ca for MAX-lab **IR FEL Workshop** B Andarbaro A Andarsson M Damirkan M Eriksson I Malmaron S Waris

4.2) Beam dynamic simulations Thermionic RF e-source:

			_ 8
Single bunch beam properties	At exit e-source	At exit energy filter	
Average Energy [MeV]	1.7	2.35	3
Energy spread [keV] (rms)	510	24	
Energy spread % (rms)	30	1	
Bunch radius [mm] (rms)	1	1.9	
Bunch length [ps] (rms)	~200	0.8	×
Normalized emittance [µm]	~30-40	4	
			- 7

0.85

0.80

0.75

time=-4.75e-10

4.3) DC photo source at high rep rate:

Cornell type e-source

Superior beam quality.....but:

- Requires high rep rate laser
- laser scientist/technician,
- replaceable semi-conductor cathodes
- ultra high vacuum
- big footprint
- expensive

Not pulsed, but continues beam at laser rep rate!

IR FEL Workshop

Canadian Centre canadien Light de rayonnement Source synchrotron THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

4.4) Thermionic DC source with higher harmonic cavities:

Conclusions.

- The electron source lab at CLS should be ready by the end of 2024. If desire, components that generate radiation can be tested in the lab.
- CLS can assist and help with e-source/accelerator/ beamline design , EM simulation, beam dynamics simulation, and testing of these components.
- Thermionic DC electron source with a modulating grid is the most straightforward option but Thermionic RF source is worth investigating as alternative because of it can have beam quality and higher rep rate → more IR power
- 'Alternative sources' probably not the best option at this moment as they are still in an experimental phase and might cause delay and reliability issues.

IR FEL Workshop

anadian Centre canadien ght de rayonnement ource synchrotron THE BRIGHTEST LIGHT IN CANADA | lightsour

14

Thank You!

Canadian Centre canadien Light de rayonnement Source synchrotron

IR FEL Workshop

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

15