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How Can We Bring Quantum
Sensing Into particle
Physics?
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Qubits As Radiation Detectors?
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Mahdi Naghiloo, (2019) [arXiv:1904.09291]

Decoherence — loss of the set up
state in the qubit
(relaxation/dephasing)
e Bad for QIS
e Good for Detecting Low
Energy Depositions

T,: Relaxation Time

timescale for loss of the energy of
the qubit state (1 to 0)

T,*: Dephasing Time

timescale for loss of the coherence
of the qubit state
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Qubits As Radiation Detectors?
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Google The First To Notice Something
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Nature Physics 18, 107-111
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Impact of Cosmogenic Radiation On Qubits ’

Nature 594, 369--373 (2021)

Offset charge (e)
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“Discrete charge jumps in qubits, induced by phonon-mediated

quasiparticle poisoning associated with absorption of gamma
rays and cosmic-ray muons in the qubit substrate”
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Impact of Cosmogenic Shielding

Gran Sasso ( 04/2019 )

Karlsruhe ( 07/2018 )

Rome ( 07/2019, 11/2019 )
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Resonator A

" Arthur B. McDonald

Canadian Astroparticle Physics Research Institute
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Nat. Commun. 12, 2733 (2021)

“Operating in a deep-underground lead-shielded
cryostat decreases the quasiparticle burst rate by a
factor fifty and reduces dissipation up to a factor
four, showcasing the importance of radiation
abatement in future solid-state quantum hardware”
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Impact Radioactive Sources On Qubits

Nature 584, 551-556 (2020)

o. ° Ql
Out e, ° Q2 =101 .

e = #8104

Ll P (] (54
§ 107" 4 -'::_,. . 10-2 I olsll)

— 50 100 150

(4% e (115)
X N ” a_“ Sagid o B
,..,,r S
‘ ﬁv ' ‘ 0-- . S
° % .
100 150 200 2350 300 350 400 450
time (hr)
== N ——. oy —em 126 e g

Sample holder 3 1
Q2 ]
21 mm 100 150 200 250 300 350

time (hr)

Measurements of decoherence relaxation rates (1/T,) in the presence of a 64Cu source. Strong
evidence that quasiparticle poisoning due to radiation breaking Cooper pairs is a limiting factor in
superconducting qubits for QIS.
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Quasiparticle Count/Charge Readout

UNIVERSITE DE
SHERBROOKE

e Collaboration with Sherbrooke.

e Use of AI-Nb heterojunction, and charge
qubits, to measure the charge of
quasiparticle from phonon-induced Copper
pair breaking on Al-islands.

e Same chip design, two different substrate
thicknesses and materials (Al,O, & SiO,).

AI203 / Si02 [mm] Al Film [pm-nm] Nb Line [nm]

e Prove of principle for this type of detection

P m/ (alpha source) & first characterization of

oty noise. [Summer 2024]
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Biggest Challenges - Reduce Overall Noise

Applied Physics Reviews 6, 021318 (2019)
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Qubit emission
to environment

Thermal 1/f ] Johnson- o< hw

(Johnson)  noise I ngius'gt / Quantum
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“Low-frequency”
noise

° Better understanding of the Phonon-Induced

Cooper-Pair breaking model.

Phonon transport models.
Cosmogenic & Radiopurity activities.
Impact of fabrication processes.
Material selection.
Induction of thermal stress.

" Arthur B. McDonald

Canadian Astroparticle Physics Research Institute
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Biggest Challenges - Reduce Overall Noise

(Johnson) noise

S)\(w)

Qubit absorption |

Qubit emission
from environment

to environment

' Johnson-
Nyquist
noise

o hw

Z” Quantum

Thermal 1/f

noise \ h (Nyquist)
x kgT noise
? Y "7" """"""""
Wy w
“Low-frequency”
noise

Better understanding of the Phonon-Induced
Cooper-Pair breaking model.

Cosmogenic & Radiopurity activities.

Impact of fabrication processes.

Material selection.

Induction of thermal stress.
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Applied Physics Reviews 6, 021318 (2019)
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XENON10 XENON100 XENONIT XENONNT
2005 2008 2016 2020
15kg 62kg 2000 kg 5900 kg

600 (keV t d)* 53 (keV t d)" 0.2 (keV t d)? *0.04 (keV t d)!

Example: L Xe Dual-Phase Time-Projection-Chambers:

° Early 2000s identified as a great technique to measure nuclear recoils with
thresholds of the order of few 10s of keV.

° Today, “Low-Background” LXe TPC are multi-tonne in size and operate with
energy thresholds of of a few keV.

Achieved By Backgrounds Modeling
Surface alphas, general surface effects, PMT flasher, Radon pollution, Tritium
pollution, unexpected fluorescences, unexplained nuclear mechanisms, quenching
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Biggest Challenges - Model Impact of IR

Phys. Rev. D 106, 023026
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Where Are Our Strongest
Capabilities To Fit Within
This Global Effort?
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TRIUMF Capabilities & Synergies

Material Selection:
Optimization of these devices requires good handle on material properties and
radiopurity.

Capability: uSR/b-NMR

Synergy: SNOLAB

Particle Radiation:
Calibration is needed to properly understand the underlying physics in this
techniques. Surface and bulk effect need separate models.
(Phonon transport modeling)
Capability: lon implantation, Dedicated Radioactive Sources
Synergy: IQC, Sherbrooke University, UBC

IR Optical Characterization:
Crucial to understand, and consequently limit, the impact of IR emission from the

environment on quantum sensors.
Capability: SuperCDMS/nEXO/ARGO Infrastructure.
Synergy: IQC, Fermilab

Arthur B. McDonald

Canadian Astroparticle Physics Research Institute
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Conclusions

e The ongoing effort to study and characterize the impact of particle
radiation in quantum sensors has potential to strongly benefit the
QIS community and it's showing signs of very promising
prospects for a meV-eV calorimetry.

e Understand “backgrounds” down to meV is key, but we have the
combined expertise to fully characterize this in the coming years
(Solid State + Condensed Matter + Particle Physics + Low
Background Techniques) Not much different than the DM problem
that requires PP,NP,Chem,Astro

What a particle interaction with a qubit
looks like according to Gemini A.l. :)

e We are just starting to see some real particle physics applications
for Quantum Technologies (Dark Matter, Neutrinos, Rare Isotopes
and more) ... Most interesting time.
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Introduction

Wave-like Particle-like
eV keV MeV GeV TeV
\ | .i | |
! | ! | |
Absorption DM-electron scattering DM-Nucleus scattering

Electronic recoil

Hidden sector Dark Matter and others

Electronic recoil Nuclear recoil

Standard WIMP

> ¢ 8B neutrinos (~ 6 GeV)

). ¢ Reactor neutrinos (~ 2.7 GeV)

SuperConductors

Superfluid He

Noble Liquids

XENON10/100/aT, LUX, LZ,

Semiconductors
Edelweiss, SupetCDMS, DAMIC,

" Arthur B. McDonald

Canadian Astroparticle Physics Research Institute
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Gradient of Xe discovery limit, n = —(dInc/dIn MT)~
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Phonon Induced Cooper-Pair Breaking
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https://arxiv.org/abs/2402.15471
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Dark Matter Scattering
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& gx XyP XAl + €F,, F'™ + m3 Al A

Consider a fermonic DM particle, x, charged
under a new Abelian gauge group U(1), with
gauge coupling g,,. The U(1), gauge boson A,
can obtain a small coupling €e to ordinary charged
particles through kinetic mixing with the photon,
mediating DM—electron scattering.

mas > 0Me

Fpa(q) = Mo tome 1,
m3 +¢? aqzne , Ma, < ame

Phys. Rev. Lett. 123, 151802 (2019)

Oe (cm?)

" Arthur B. McDonald

Canadian Astroparticle Physics Research Institute
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Light Mediator Heavy Mediator
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Feasibility for a Small Al203 or SiO2 wafer with single Quasiparticle
Readout (JJ-based). Assuming meV Threshold, and no background counts
(this should be fixed based on HE gamma flux).

2 0

Bulk of the calculations was done using the DarkELF code available on 5‘@
GitHub at the following link: DarkELF s )
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https://github.com/tongylin/DarkELF/blob/main/examples/darkelf_absorption.ipynb

