∂TRIUMF

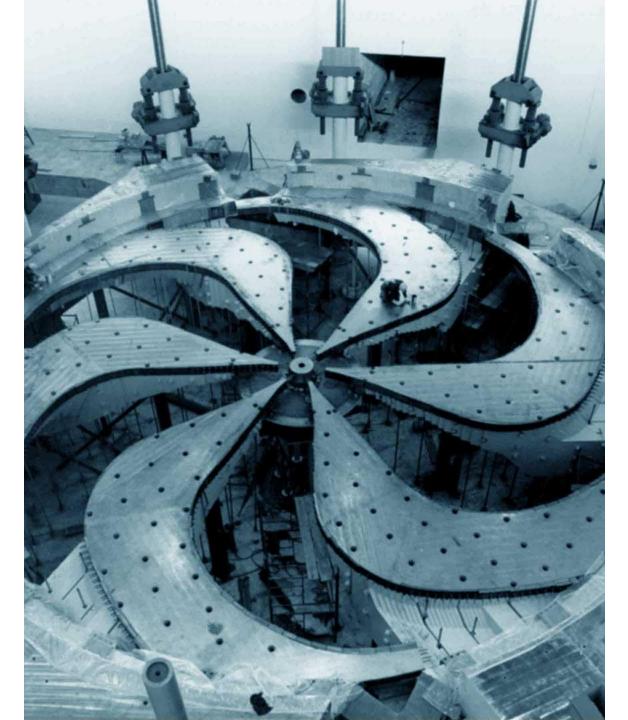
Quantum Computing Applications (aka Quantum Software)

@TRIUMF and elsewhere

Wojtek Fedorko

Contributions from:

R. Woloshyn,


P. Gysbers

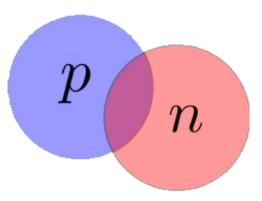
J. Quetzalcoatl Toledo-Marín,

H. Jia

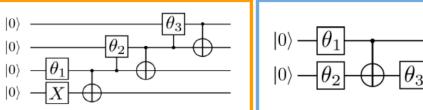
(misrepresentations fully mine)

2024-03-11

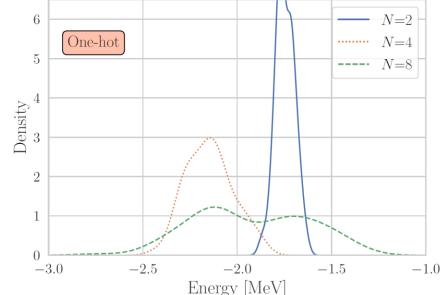
Discovery, accelerated

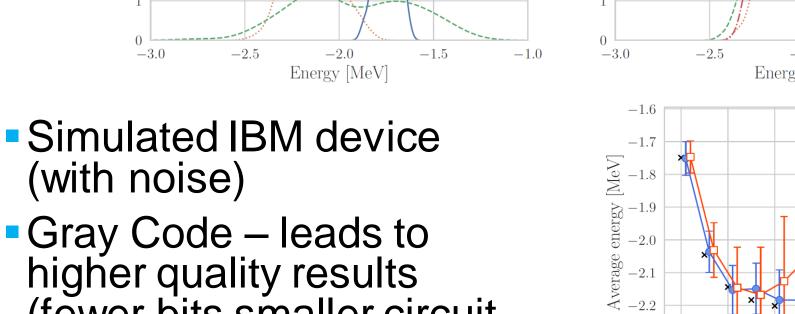

Gate model QC: efficient state coding

- Develop technique for efficient encoding of many-body Hamiltonians by using 2^N available states
- Example problem: deuteron ground state


 $E\left|\Psi\right\rangle = H\left|\Psi\right\rangle$

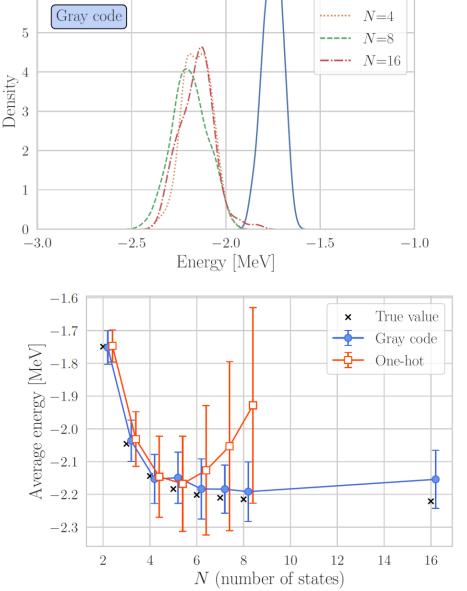
 Variational Quantum Eigensolver:
 Encode Hamiltonian into Pauli Matrices
 Optimize 2008.05012


O. Di Matteo, A. McCoy, P. Gysbers, T. Miyagi, R. M. Woloshyn, P. Navratil



$ \psi(\theta)\rangle = U(\theta) \psi_0\rangle$			
Basis	Encoding		
	Occupation	Gray Code	
(N states)	(N qubits)	$(\log_2(N) \text{ qubits})$	
0 angle	$ 1000\rangle$	$ 00\rangle$	
1 angle	0100 angle	$ 10\rangle$	
2 angle	$ 0010\rangle$	$ 11\rangle$	
3 angle	$ 0001\rangle$	01 angle	

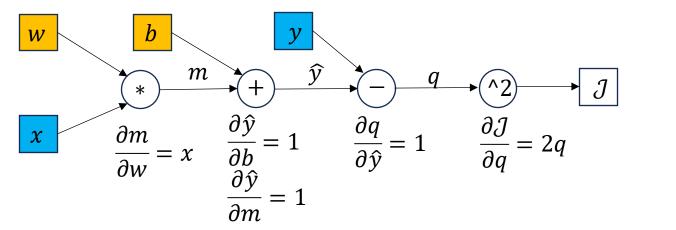
Gray code state encoding results

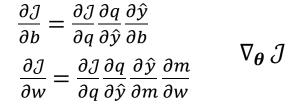


6

 Gray Code – leads to higher quality results (fewer bits smaller circuit) depth)

(with noise)




N=2

Gate model QC: autodifferentiation through a quantum circuit for multi-body systems Phys. Rev. A

Auto-differentiation in deep learning

- Break down the computation into atomic operations
- Construct a computational graph \rightarrow Keep track of the inputs of each operation e.g. E.g. $\hat{y} = w * x + b$, $\mathcal{J} = (\hat{y} y)^2$

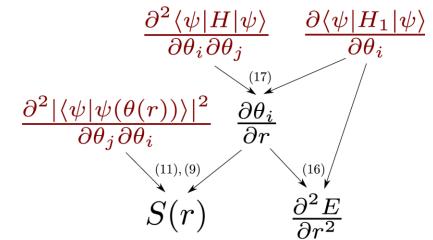
- Backpropagation: follow graph backwards from apply chain rule repeatedly to calculate partial derivatives of \mathcal{J} wrt learnable parameters
- Also possible through quantum circuits!

Phys. Rev. A 106, 05249 (2022) [arXiv:2207.06526] O. Di Matteo, R. M. Woloshyn

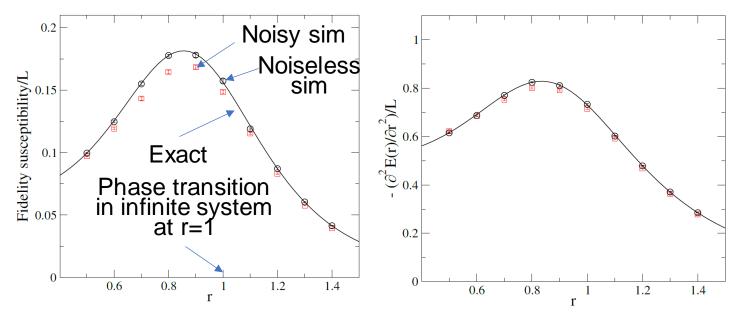
Autodiff in QC: parameter shift rule and phase transitions

Parameter shift rule:

- Let $U(\theta)$ be a parametrized variational circuit i.e. single qubit rotations with angles θ_i
- E.g. measure the expectation $E(\theta) = \langle \mathbf{0} | U^{\dagger}(\theta) H U(\theta) | \mathbf{0} \rangle$ • Gradient wrt $\theta_i: \frac{\partial E(\theta)}{\partial \theta_i} = \frac{1}{2} \left(E\left(\dots, \theta_i + \frac{\pi}{2}, \dots\right) - E\left(\dots, \theta_i - \frac{\pi}{2}, \dots\right) \right)$


NOT final differences method

Explore application to study of phase transition


- Hamiltonian: $H(r) = H_0 + rH_1$ different phases for different r
- Fidelity $F(r, \delta) = |\langle \psi_0(r) | \psi_0(r+\delta) \rangle|$
- Fidelity Susceptibility: $S(r) = \partial_{\delta}^2 F(r, \delta)|_{\delta=0}$.

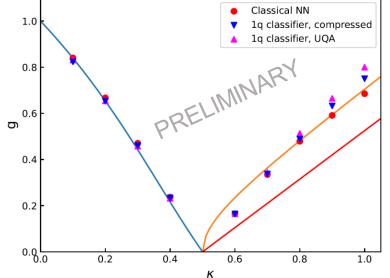
Autodiff in QC: parameter shift rule and phase transitions

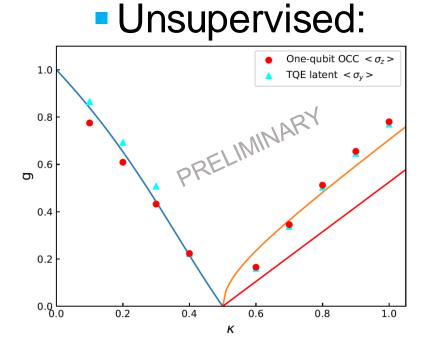
- Scheme for derivative computation:
- Example system transverse field Ising model

Results for a 6-site system:

Shift method works for estimating quantities important for study of phase transitions!

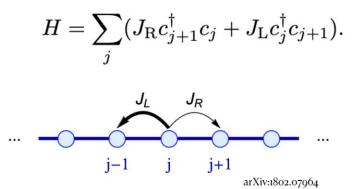
Data re-uploading for phase detection

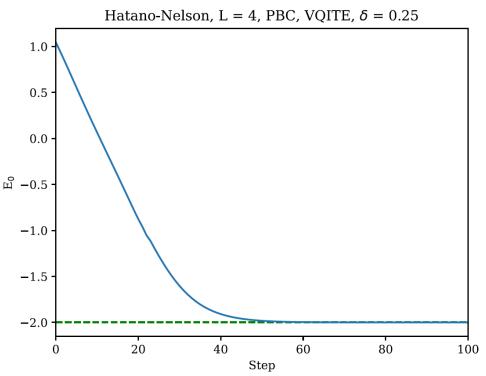

 Detect phases while reducing qubit requirements: data re-uploading


Axial next-nearest-neighbour Ising

$$\mathcal{H} = -J \sum_{i=1}^{\infty} \left(\sigma_i^z \sigma_{I+1}^z - \kappa \sigma_i^z \sigma_{i+2}^z + g \sigma_i^x \right)$$

N

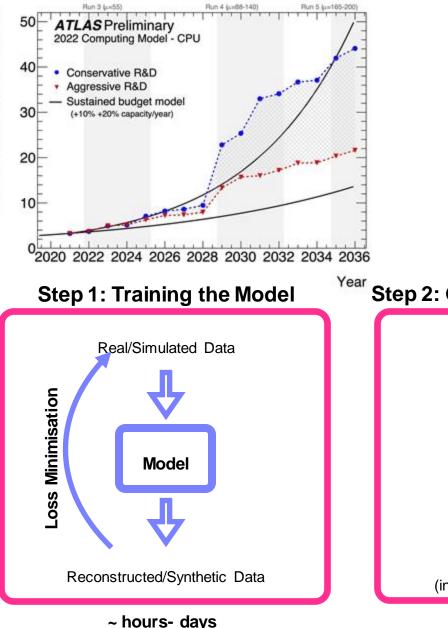

Non-Hermitian models


Explore techniques required to treat non-Hermitian Hamiltonians e.g. Hatano-Nelson

 Quantum imaginary time evolution (QITE) → extract ground state by evolving in imaginary time direction

Variational QITE

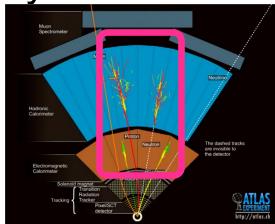
- Split H into Hermitian real and imaginary parts and and imaginary parts
- Variational ansatz
- Hamiltonian in expressed in Paulis
- Adapt methods for derivativities of expectation values



Simulated QC \rightarrow finds the ground state

R. M. Woloshyn

High Luminosity LHC – the computing problem

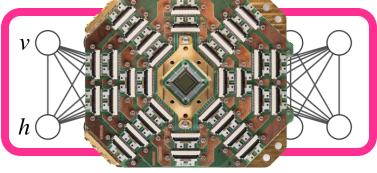


Annual CPU Consumption [MHS06years]

Step 2: Generating Synthetic Data

Simulation needs not sustainable at HL-LHC experiments


- Driven by calorimetry simulation
- Use generative AI

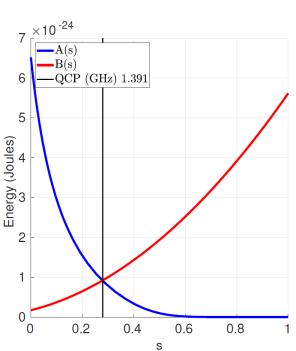

Can we use Quantumassisted generative AI?

9

Variational Autoencoders, Discrete VAEs, Quantum Annealers

- VAE: Latent space modelled by a factorized Gaussian
 - Not expressive in practice yields poor results
- Make the Latent space more expressive: Restricted Boltzmann Machine
 - Discrete
 - Learnable
 - Non-factorizable

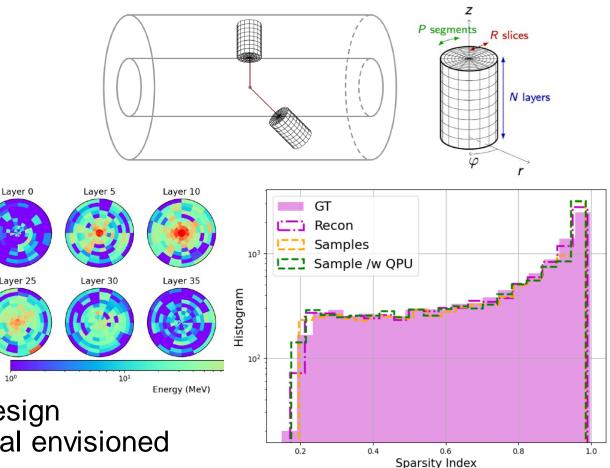
- Slow 🐵 Markov Chain MC
- Use Quantum Annealer to make it fast!


Quantum annealing on D-Wave QPU

Ising spin system
$$\mathcal{H}_{ising} = -\frac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{x}^{(i)} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)} \right)$$

Initial Hamiltonian

Configurable couplings and biases


- Start with A(0) >> B(0) end up with A(1) << B(1)
- System at finite temperature T system can end up not in a ground state:
 - Boltzmann distribution
- We will exploit this use the D-Wave device as a sampler! $p_i \propto e^{-\varepsilon_i/(kT)}$
- Bi-partite or 4-partite architecture natural mapping onto a RBM

Final Hamiltonian

Dataset and results

- CaloChallenge dataset (ATLAS open data)
 - Electrons 1GeV-1TeV
- QPU sampling:
 - Good variety
 - Reproduces physics distributions
 - 2e3 faster than 1st principles sim
 - Readout dominated
- Potential future applications
 - Reduced resources for generative AI
 - Unsupervised learning e.g. molecular design
 - Exploration of commercialization potential envisioned
- Great ground for HQP training and EDI advancement
- People: J. Quetzalcoatl Toledo-Marín (TRIUMF), S. Gonzalez (TRIUMF/UBC), H. Jia(UBC/TRIUMF), A. Abhishek (UBC), T, Vale (SFU), S. Andersen (TRIUMF/Lund), R. Melko (PI), E. Paquet (NRC) G.Fox (Virginia), B. Stelzer (SFU), C. Gay(UBC), A. Lister, O. Stelzer-Chilton, M. Swiatlowski (TRIUMF), W. Fedorko
- Support from NRC AQC program

QC – quick look around the labs

	Applications	Hosting/building
LBNL	 Event simulation Field theory simulations Pattern recognition (tracking) Algorithms for chemical sciences 	Superconducting
PSI		SuperconductingIon Trap
FNAL	Lattice QCD simulationsHEPCloud	Superconducting
DESY	 Optimization AI Lattice QCD	 IBM quantum hub
CERN	 Lattice gauge theory Collective neutrino oscillations QML 	 IBM quantum hub

Summary

- Exploring QC techniques applicable to problems in multibody systems (condensed matter, nuclear physics)
- Developing quantum-assisted generative AI for experimental HEP applications
- Potential for growth and becoming a resource for the Canadian research community
- (Partly?) aligned with the Quantum Software Mission and the Research and Talent pillars
 - Commercialization exploration envisioned within the NRC AQC

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

