Quantum Materials

Kenji M. Kojima

Quantum Materials Research and CMMS at TRIUMF

Fig. 1. Molecular structure of nitronyl nitroxides studied using μ SR.

Superconductivity

Phase of electron wavefunctions (super and normal)

Local magnetic fields

Quantum Materials Research and CMMS at TRIUMF

An example of Quantum Sensor

From lain's slide

Quantum sensors vs. Semiconductor knowledge from CMMS probes

Quantum sensors vs. Diffusion knowledge from CMMS probes

From Iain's slide

µSR Spectrometers (=Sample environment + Detectors and DAQ)

LAMPF

- 4 x Helmholtz
- 0.3 T / *z,* 10 mT / *x, y*
- Miss Piggy: 1.7 330 K
- Gas flow: 2.8 330 K
- Oven: 290 900 K

NuTime

- Superconducting Solenoid
- 7.0 T / z
- ⁴He cryostat: 2 330 K

DR

- Superconducting Helmholtz
- 5 T / z, 2.5 mT / x
- 15 mK to 10 K

Helios

- Superconducting Solenoid
- 6 T / z, 2 mT / y
- Circulator: 250 475 K
- Gas flow: 2.8 330 K
- Oven: 290 900 K

β-NMR Spectrometers (=Sample environment + Detectors and DAQ)

βNMR

- Maximum magnetic field: 9 T
- Maximum magnetic field with RF: 6.55 T
- Temperature: 4 320 K

Low-field **BNQR**

- Magnetic field: 0 24 mT
- Normal cryostat: 4 320 K
- Cryo-oven: 4 400 K

Mid-field βNQR

- NSERC RTI funded + TRIUMF contribution
- Commissioned 2022
- Magnetic field: 0 0.2T
- Cryo-oven: 4 400 K

Quantum Materials research in Quantum Strategy at TRIUMF

CMMS has strong a background on

- How quantum sensors (molecular or semiconductor-based) will behave.
- Detectors, Cryogenics, Magnets and Beamlines.
- Theory of many-body (electron) wavefunctions.

TRIUMF is a small and maneuverable society

• Close collaborations with interdisciplinary fields will be easy and beneficial.

Quantum is a good keyword to tie us together !