

r-process nucleosynthesis

r-process observables: abundance patterns

in metal-poor stars

solar system *r*-process residuals

r-process observables: electromagnetic signatures

Perkins, Ellis, Fields, Hartmann, Liu, McLaughlin, Surman, Wang 2024

UNIVE NOTRI College o

Interpreting observables of *r*-process nucleosynthesis

- What observables are currently limited by nuclear uncertainties that could be addressed in the FRIB/ARIEL/FAIR era?
- Are there distinguishing observables that rise above nuclear uncertainties?
- What can we learn about nuclear physics far from stability from *r*-process observables?

Interpreting observables of *r*-process nucleosynthesis

- What observables are currently limited by nuclear uncertainties that could be addressed in the FRIB/ARIEL/FAIR era?
- Are there distinguishing observables that rise above nuclear uncertainties?
- What can we learn about nuclear physics far from stability from *r*-process observables?

Did the GW170817 merger produce actinides?

Zhu, Wollaeger, Vassh, Surman, Sprouse, Mumpower, Möller, McLaughlin, Korobkin, Jaffke, Holmbeck, Fryer, Even, Couture, Barnes, ApJL 2018

Did the GW170817 merger produce actinides?

Subsequent KNe show similar late time behavior

²⁵⁴Cf: dependence on nuclear inputs

Barrier Height [MeV]

$\boldsymbol{\beta}$ decay and actinide production

Nuclear masses and actinide production

UNIVERSITY OF NOTRE DAME College of Science

Interpreting observables of *r*-process nucleosynthesis

- What observables are currently limited by nuclear uncertainties that could be addressed in the FRIB/ARIEL/FAIR era?
- Are there distinguishing observables that rise above nuclear uncertainties?
- What can we learn about nuclear physics far from stability from *r*-process observables?

Actinide observables: gamma rays

Korobkin, Hungerford, Fryer, Mumpower, Misch, Sprouse, Lippuner, Surman, Couture, Bloser, Shirazi, Evan, Vestrand, Miller 2020

also Hotokezaka+2016; Li 2019; Wu+2019; Ruiz-Lapuente, Korobkin 2020

Wang, Vassh, Sprouse, Mumpower, Vogt, Randrup, Surman, ApJL 2020

Actinide observables: gamma rays

Wang, Vassh, Sprouse, Mumpower, Vogt, Randrup, Surman, ApJL 2020

Actinide observables: gamma rays

Wang+ in preparation 2024

Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2021; Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2023

Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2021; Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2023

Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2021; Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2023

UNIVERSITY OF NOTRE DAME College of Science

Actinide observables: lunar regolith

Wang, Clark, Ellis, Ertel, Fields, Fry, Liu, Miller, Surman, ApJ 2023

Interpreting observables of *r*-process nucleosynthesis

- What observables are currently limited by nuclear uncertainties that could be addressed in the FRIB/ARIEL/FAIR era?
- Are there distinguishing observables that rise above nuclear uncertainties?
- What can we learn about nuclear physics far from stability from *r*-process observables?

UNEDF1 masses

Sprouse, Navarro Perez, Surman, Mumpower, McLaughlin, Schunck 2020

А

TABLE II: Optimized parameter set UNEDF1. Listed are bounds used in the optimization, final optimized parameter values, standard deviations, and 95% confidence intervals.

x	Bounds	$\hat{\mathbf{x}}^{(ext{fin.})}$	σ	95% CI
$ ho_{ m c}$	[0.15, 0.17]	0.15871	0.00042	[0.158, 0.159]
$E^{\rm NM}/A$	[-16.2, -15.8]	-15.800	_	—
$K^{\rm NM}$	[220, 260]	220.000	—	—
$a_{\mathrm{sym}}^{\mathrm{NM}}$	[28, 36]	28.987	0.604	[28.152, 29.822]
$L_{\rm sym}^{ m NM}$	[40, 100]	40.005	13.136	[21.841, 58.168]
$1/M_s^*$	[0.9, 1.5]	0.992	0.123	[0.823, 1.162]
$C_{0}^{\rho\Delta\rho}$	$[-\infty, +\infty]$	-45.135	5.361	[-52.548, -37.722]
$C_1^{\rho\Delta\rho}$	$[-\infty,+\infty]$	-145.382	52.169	[-217.515, -73.250]
V_0^n	$[-\infty, +\infty]$	-180.005	18.510	[-211.000, -100.404]
V_0^p	$[-\infty,+\infty]$	-206.580	13.049	[-224.622, -188.538]
$C_0^{\rho \nabla J}$	$[-\infty,+\infty]$	-74.026	5.048	[-81.006, -67.046] \approx
$C_1^{\rho \nabla J}$	$[-\infty,+\infty]$	-35.658	23.147	[-67.663, -3.654]

Sprouse, Navarro Perez, Surman, Mumpower, McLaughlin, Schunck 2020

UNEDF1 masses

weighted average A of the rare earth peak

Fission yield signatures

Fission yield signatures

Fission yield signatures

Roederer, Vassh, Holmbeck, Mumpower, Surman, Cowan, Beers, Ezzeddine, Frebel, Hansen, Placco, Sakari, *Science* 2023

summary

The origin of the heaviest elements in the *r*-process of nucleosynthesis has been one of the greatest mysteries in nuclear astrophysics for decades.

Despite considerable progress in the past several years, including the first direct detection of an *r*-process event, the *r*-process site(s) has not been definitively determined.

The neutrino and nuclear physics of candidate events remains poorly understood. FRIB, the N=126 factory, ARIEL, and FAIR have the potential to reduce key nuclear uncertainties, facilitating accurate interpretations of *r*process observables such as abundance patterns and light curves.

Mumpower, Surman, McLaughlin, Aprahamian, JPPNP 2016

