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Causal Set Theory: Spacetime is Fundamentally Discrete 1

A causal set is a locally finite partially ordered set. It is a set C
along with an ordering relation � that satisfy:

• It is reflexive: for all X ∈ C, X � X .

• It is antisymmetric: for all X ,Y ∈ C, X � Y � X implies
X = Y .

• It is transitive: for all X ,Y ,Z ∈ C, X � Y � Z implies
X � Z .

• And, it is locally finite: for all X ,Y ∈ C, |I (X ,Y )| <∞,
where | · | denotes cardinality and I (X ,Y ) is the causal
interval defined by I (X ,Y ) := {Z ∈ C|X � Z � Y }.

1Bombelli, L., Lee, J. H., Meyer, D. and Sorkin, R. D., 1987, Space-Time as
a Causal Set, Phys. Rev. Lett. 59, 521.



Causal Set Theory

Sprinkling: generates a causal set from a given Lorentzian manifold
M, by placing points at random in M via a Poisson process with

“density” ρ, such that P(N) = (ρV )N

N! e−ρV .

Lorentz invariant and non-local.



The Sorkin-Johnston Vacuum 2

The covariant commutation relations are given by the Peierls
bracket

[φ̂(x), φ̂(x ′)] = i∆(x , x ′), (1)

where the Pauli-Jordan function is

i∆(x , x ′) ≡ i(GR(x , x ′)− GA(x , x ′)), (2)

with GR,A(x , x ′) being the retarded and advanced Green functions.

Ker(�̂−m2) = Im(∆̂). (3)

Thus the eigenvectors in the image of i∆̂ span the full solution
space of the KG operator.

2R.D. Sorkin, J. Phys. Conf. Ser. 306 (2011) 012017 [arXiv:1107.0698].
S. P. Johnston (2010) [arXiv:1010.5514].



The Sorkin-Johnston Vacuum

i∆ is a self-adjoint operator on a bounded region of spacetime.

Write i∆(x , x ′) in terms of its positive (uk) and negative (vk)
eigenfunctions:

i∆(x , x ′) =
∑
k

[
λkuk(x)u†k(x ′)− λkvk(x)v †k (x ′)

]
. (4)

Restrict to positive eigenspace to get the Wightman or two-point
function in the SJ vacuum:

WSJ(x , x ′) ≡ Pos(i∆) =
∑
k

λkuk(x)u†k(x ′). (5)



Some Properties of the SJ Vacuum

• An observer independent vacuum which is unique.

• In static spacetimes, the SJ vacuum is the same one that is
picked out by the timelike and hypersurface-orthogonal Killing
vector.

• While not necessarily Hadamard itself, a family of Hadamard
states can be constructed from it.

• Can be applied to both causal sets and continuum spacetimes.

• Prescription for fermions also exists.

• Is a pure state for a spacetime definition of entanglement
entropy (while its restriction to a smaller region is not pure).



de Sitter invariant α-Vacua

α-vacua are a two-real-parameter family of dS invariant vacua.
α = 0 is special (Hadamard) and is called the Euclidean or
Bunch-Davies vacuum3.

The Wightman function for the Euclidean vacuum in d is given by

WE (x , y) = Γ[h+]Γ[h−]

(4π)d/2`2Γ[ d
2

] 2F1

(
h+, h−,

d
2 ; 1+Z(x ,y)+iε sign(x0−y0)

2

)
where Z (x , y) = ηABX

A(x)XB(y), h± = d−1
2 ± ν,

ν = `

√(
d−1

2`

)2 −m2, and 2F1 is a hypergeometric function.

It is usually said that there is no known de Sitter invariant Fock
vacuum for the massless, minimally coupled theory.

3Also known by other names.



Results: 2d massless & massive, ds2 = 1
cos2 T̃

(
−dT̃ 2 + dΩ2

d−1

)

Figure: Upper: massless scatter plot with mean values in red. Lower: m=2.3
scatter plot with WE in red. Left: causal. Right: spacelike. T = T̃max = 1.5



Results: 4d massless & massive

Figure: Upper: m=1.41 mean values with WE in blue. Lower: T=1.42
mean values. Left: causal. Right: spacelike



Conclusions and Future Directions

Our work strongly suggests that the SJ state is an altogether new
de Sitter invariant vacuum in 4d.

• Analytic understanding of the SJ vacuum, perhaps in a corner
of the parameter space.

• Spacetime entanglement entropy for de Sitter horizons.

• Early universe phenomenology. Extract observational
consequences.


