The SJ Vacuum in de Sitter Spacetime

Theory Canada 14, Vancouver BC

Yasaman K. Yazdi
Work with Sumati Surya and Nomaan X
arXiv:1812.10228
June 01, 2019

- Causal set theory
- The Sorkin-Johnston (SJ) vacuum of a free scalar field
- Applications and properties of the SJ vacuum: static spacetimes, entanglement entropy, etc.
- Vacuum states in de Sitter spacetime
- The SJ vacuum in de Sitter spacetime
- Conclusions and future directions

Causal Set Theory: Spacetime is Fundamentally Discrete ${ }^{1}$

A causal set is a locally finite partially ordered set. It is a set \mathcal{C} along with an ordering relation \preceq that satisfy:

- It is reflexive: for all $X \in \mathcal{C}, X \preceq X$.
- It is antisymmetric: for all $X, Y \in \mathcal{C}, X \preceq Y \preceq X$ implies $X=Y$.
- It is transitive: for all $X, Y, Z \in \mathcal{C}, X \preceq Y \preceq Z$ implies $X \preceq Z$.
- And, it is locally finite: for all $X, Y \in \mathcal{C},|l(X, Y)|<\infty$, where $|\cdot|$ denotes cardinality and $I(X, Y)$ is the causal interval defined by $I(X, Y):=\{Z \in \mathcal{C} \mid X \preceq Z \preceq Y\}$.

[^0]
Causal Set Theory

Sprinkling: generates a causal set from a given Lorentzian manifold \mathcal{M}, by placing points at random in \mathcal{M} via a Poisson process with "density" ρ, such that $P(N)=\frac{(\rho V)^{N}}{N!} e^{-\rho V}$.

Lorentz invariant and non-local.

The covariant commutation relations are given by the Peierls bracket

$$
\begin{equation*}
\left[\hat{\phi}(x), \hat{\phi}\left(x^{\prime}\right)\right]=\mathrm{i} \Delta\left(x, x^{\prime}\right) \tag{1}
\end{equation*}
$$

where the Pauli-Jordan function is

$$
\begin{equation*}
\mathrm{i} \Delta\left(x, x^{\prime}\right) \equiv \mathrm{i}\left(G_{R}\left(x, x^{\prime}\right)-G_{A}\left(x, x^{\prime}\right)\right) \tag{2}
\end{equation*}
$$

with $G_{R, A}\left(x, x^{\prime}\right)$ being the retarded and advanced Green functions.

$$
\begin{equation*}
\operatorname{Ker}\left(\hat{\square}-m^{2}\right)=\overline{\operatorname{Im}(\hat{\Delta})} \tag{3}
\end{equation*}
$$

Thus the eigenvectors in the image of $\mathrm{i} \hat{\Delta}$ span the full solution space of the KG operator.

[^1]
The Sorkin-Johnston Vacuum

i Δ is a self-adjoint operator on a bounded region of spacetime.
Write i $\Delta\left(x, x^{\prime}\right)$ in terms of its positive $\left(u_{k}\right)$ and negative $\left(v_{k}\right)$ eigenfunctions:

$$
\begin{equation*}
\mathrm{i} \Delta\left(x, x^{\prime}\right)=\sum_{k}\left[\lambda_{k} u_{k}(x) u_{k}^{\dagger}\left(x^{\prime}\right)-\lambda_{k} v_{k}(x) v_{k}^{\dagger}\left(x^{\prime}\right)\right] . \tag{4}
\end{equation*}
$$

Restrict to positive eigenspace to get the Wightman or two-point function in the SJ vacuum:

$$
\begin{equation*}
W_{S J}\left(x, x^{\prime}\right) \equiv \operatorname{Pos}(\mathrm{i} \Delta)=\sum_{k} \lambda_{k} u_{k}(x) u_{k}^{\dagger}\left(x^{\prime}\right) \tag{5}
\end{equation*}
$$

Some Properties of the SJ Vacuum

- An observer independent vacuum which is unique.
- In static spacetimes, the SJ vacuum is the same one that is picked out by the timelike and hypersurface-orthogonal Killing vector.
- While not necessarily Hadamard itself, a family of Hadamard states can be constructed from it.
- Can be applied to both causal sets and continuum spacetimes.
- Prescription for fermions also exists.
- Is a pure state for a spacetime definition of entanglement entropy (while its restriction to a smaller region is not pure).

de Sitter invariant α-Vacua

α-vacua are a two-real-parameter family of dS invariant vacua. $\alpha=0$ is special (Hadamard) and is called the Euclidean or Bunch-Davies vacuum ${ }^{3}$.

The Wightman function for the Euclidean vacuum in d is given by

$$
W_{E}(x, y)=\frac{\Gamma\left[h_{+}\right] \Gamma\left[h_{-}\right]}{(4 \pi)^{d / 2} \ell^{2} \Gamma\left[\frac{d}{2}\right]} 2 F_{1}\left(h_{+}, h_{-}, \frac{d}{2} ; \frac{1+Z(x, y)+i \epsilon \operatorname{sign}\left(x^{0}-y^{0}\right)}{2}\right)
$$

where $Z(x, y)=\eta_{A B} X^{A}(x) X^{B}(y), h_{ \pm}=\frac{d-1}{2} \pm \nu$,
$\nu=\ell \sqrt{\left(\frac{d-1}{2 \ell}\right)^{2}-m^{2}}$, and ${ }_{2} F_{1}$ is a hypergeometric function.
It is usually said that there is no known de Sitter invariant Fock vacuum for the massless, minimally coupled theory.

[^2]
Results: 2d massless \& massive, $d s^{2}=\frac{1}{\cos ^{2} \tau}\left(-d \tilde{T}^{2}+d \Omega_{d-1}^{2}\right)$

Figure: Upper: massless scatter plot with mean values in red. Lower: $\mathrm{m}=2.3$ scatter plot with W_{E} in red. Left: causal. Right: spacelike. $T=\tilde{T}_{\text {max }}=1.5$

Results: 4d massless \& massive

- $\mathrm{T}=1.2$
- $\mathrm{T}=1.3$
- $\mathrm{T}=1.38$
- $\mathrm{T}=1.39$
- $T=1.4$
- $\mathrm{T}=1.41$
- $\mathrm{T}=1.42$

Figure: Upper: $\mathrm{m}=1.41$ mean values with W_{E} in blue. Lower: $\mathrm{T}=1.42$ mean values. Left: causal. Right: spacelike

Conclusions and Future Directions

Our work strongly suggests that the SJ state is an altogether new de Sitter invariant vacuum in 4d.

- Analytic understanding of the SJ vacuum, perhaps in a corner of the parameter space.
- Spacetime entanglement entropy for de Sitter horizons.
- Early universe phenomenology. Extract observational consequences.

[^0]: ${ }^{1}$ Bombelli, L., Lee, J. H., Meyer, D. and Sorkin, R. D., 1987, Space-Time as a Causal Set, Phys. Rev. Lett. 59, 521.

[^1]: ${ }^{2}$ R.D. Sorkin, J. Phys. Conf. Ser. 306 (2011) 012017 [arXiv:1107.0698]. S. P. Johnston (2010) [arXiv:1010.5514].

[^2]: ${ }^{3}$ Also known by other names.

