Reduced Quantum Dynamics from Observables

arXiv:190x.xxxxx w/ Oleg Kabernik (UBC) and Ashmeet Singh (Caltech)

Jason Pollack jpollack@phas.ubc.ca

Theory Canada 14

$$
\text { May 31, } 2019
$$

> Prior Work:
> 1801.09770 (OK)
> 1801.10168 (JP+AS)

Disclaimer

- I work on quantum gravity, but this talk will not (explicitly) be about quantum gravity.
- I care about this problem mainly because I'm interested in the (approximate) emergence of spacetime from a (more) fundamental Hilbertspace description.
- (Including, but not limited to, a holographic description.)
- But (I hope) the results will be interesting more generally.

Motivation: Classical Physics analogy

Motivation: Classical Physics analogy

- Classical microphysics: choice of phase/configuration space, time evolution law $(\rightarrow$ implies symmetries + conserved quantities)
- Gas of particles in a box, mass distribution in galaxy, ...

Motivation: Classical Physics analogy

- Classical microphysics: choice of phase/configuration space, time evolution law $(\rightarrow$ implies symmetries + conserved quantities)
- Gas of particles in a box, mass distribution in galaxy, ...
- Microstates $=$ points in configuration space

Motivation: Classical Physics analogy

- Classical microphysics: choice of phase/configuration space, time evolution law $(\rightarrow$ implies symmetries + conserved quantities)
- Gas of particles in a box, mass distribution in galaxy, ...
- Microstates = points in configuration space
- Arbitrary macrostates = collections of/distributions over microstates

Motivation: Classical Physics analogy

- Classical microphysics: choice of phase/configuration space, time evolution law $(\rightarrow$ implies symmetries + conserved quantities)
- Gas of particles in a box, mass distribution in galaxy, ...
- Microstates = points in configuration space
- Arbitrary macrostates = collections of/distributions over microstates
- Good macrostates = possible to measure macroscopically, approximately preserved under time evolution (macrostates evolve to macrostates)
- States with definite values of thermodynamic/hydrodynamic properties, planets/stars, ...

Motivation: explaining the title

Motivation: explaining the title

"Quantum"

- Phase space \rightarrow Hilbert space

Motivation: explaining the title

"Quantum"

- Phase space \rightarrow Hilbert space "Reduced"
- Macrostate \rightarrow reduced density matrix (operator on auxiliary Hilbert space)

Motivation: explaining the title

"Quantum"

- Phase space \rightarrow Hilbert space
"Reduced"
- Macrostate \rightarrow reduced density matrix (operator on auxiliary Hilbert space)
"Dynamics"
- Decoherence program: classical states are preserved under the action of the environment

Motivation: explaining the title

"Quantum"

- Phase space \rightarrow Hilbert space
"Reduced"
- Macrostate \rightarrow reduced density matrix (operator on auxiliary Hilbert space)
"Dynamics"
- Decoherence program: classical states are preserved under the action of the environment
- "Observables"
- Reduced state preserves information about specified set of observables - more general than tensor factor

Summary of results: formal results

Summary of results: formal results

- We have a more general method ("generalized bipartition tables") of generating reduced states than the partial-trace map
- i.e. we can generate information-preserving maps from the space of density matrices in $L(H)$ to space of density matrices in $L\left(H^{\prime}\right)$, where H^{\prime} is not necessarily a factor of H

Summary of results: formal results

- We have a more general method ("generalized bipartition tables") of generating reduced states than the partial-trace map
- i.e. we can generate information-preserving maps from the space of density matrices in $\mathrm{L}(\mathrm{H})$ to space of density matrices in $\mathrm{L}\left(\mathrm{H}^{\prime}\right)$, where H^{\prime} is not necessarily a factor of H
- We have an (explicit, polynomial-time) algorithm for going from the subalgebra generated by a set of observables to a generalized BPT which preserves expectation values of this subalgebra
- Block-diagonal BPTs-c.f. explicit construction of block decomposition of a Hilbert space given a vN algebra
- Involves graph-theoretic reduction of a special set of projectors

Summary of results: physical results

Summary of results: physical results

- When the observables are "collective" observables, we can directly construct the generalized BPT (\rightarrow reduced state) using group-theoretic considerations.

Summary of results: physical results

- When the observables are "collective" observables, we can directly construct the generalized BPT (\rightarrow reduced state) using group-theoretic considerations.
- Block-diagonal BPTs naturally yield superselection sectors which can be interpreted in terms of in-principle-unobservable superpositions of states.

Summary of results: physical results

- When the observables are "collective" observables, we can directly construct the generalized BPT (\rightarrow reduced state) using group-theoretic considerations.
- Block-diagonal BPTs naturally yield superselection sectors which can be interpreted in terms of in-principle-unobservable superpositions of states.
- The standard (Zurekian) decoherence analysis can be applied to these new reduced states.

Summary of results: physical results

- When the observables are "collective" observables, we can directly construct the generalized BPT (\rightarrow reduced state) using group-theoretic considerations.
- Block-diagonal BPTs naturally yield superselection sectors which can be interpreted in terms of in-principle-unobservable superpositions of states.
- The standard (Zurekian) decoherence analysis can be applied to these new reduced states.
- Variation over possible sets of observables with the dynamics fixed yields the classical observables.

Wait, I only have 15 minutes?

- I'll try to define generalized BPTs and sketch the algorithm for reducing a state given a subalgebra of observables.
- Ask me about the rest later!

The Partial-Trace Map + Bipartition tables

The Partial-Trace Map + Bipartition tables

- Density matrix lives in L(H)

The Partial-Trace Map + Bipartition tables

- Density matrix lives in L(H)
- Reduced density matrix lives in L(different H)
- Preserves expectation values

The Partial-Trace Map + Bipartition tables

- Density matrix lives in L(H)
- Reduced density matrix lives in L(different H)
- Preserves expectation values
- (pure/mixed) state + particular choice of partial-trace map respecting factorization of Hilbert space \rightarrow reduced density matrix

The Partial-Trace Map + Bipartition tables

- Density matrix lives in L(H)
- Reduced density matrix lives in L(different H)
- Preserves expectation values
- (pure/mixed) state + particular choice of partial-trace map respecting factorization of Hilbert space \rightarrow reduced density matrix
- "Bipartition table": tool to visualize the relevant bipartition for the partial-trace map
- Essentially, arrangement of basis states into a grid

Defining the BPT

Defining the BPT

Factorization: $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad\left|a_{i}, b_{k}\right\rangle:=\left|a_{i}\right\rangle \otimes\left|b_{k}\right\rangle$

Defining the BPT

- Factorization: $\mathcal{H}_{A} \otimes \mathcal{H}_{B}\left|a_{i}, b_{k}\right\rangle:=\left|a_{i}\right\rangle \otimes\left|b_{k}\right\rangle$
- Bipartition table

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$

Defining the BPT

- Factorization: $\mathcal{H}_{A} \otimes \mathcal{H}_{B}\left|a_{i}, b_{k}\right\rangle:=\left|a_{i}\right\rangle \otimes\left|b_{k}\right\rangle$
- Bipartition table

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$

- Bipartition operators for each pair of columns

$$
S_{k l}:=\sum_{i=1 \ldots d_{A}}\left|a_{i}, b_{k}\right\rangle\left\langle a_{i}, b_{l}\right|=I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|
$$

Defining the BPT

- Factorization: $\mathcal{H}_{A} \otimes \mathcal{H}_{B}\left|a_{i}, b_{k}\right\rangle:=\left|a_{i}\right\rangle \otimes\left|b_{k}\right\rangle$
- Bipartition table

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$

- Bipartition operators for each pair of columns

$$
S_{k l}:=\sum_{i=1 \ldots d_{A}}\left|a_{i}, b_{k}\right\rangle\left\langle a_{i}, b_{l}\right|=I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|
$$

- State reduction $\rho \longmapsto \quad \sum \operatorname{tr}\left(S_{k l} \rho\right)\left|b_{l}\right\rangle\left\langle b_{k}\right|$

$$
k, l=1 \ldots d_{B}
$$

Defining the BPT

- Factorization: $\mathcal{H}_{A} \otimes \mathcal{H}_{B}\left|a_{i}, b_{k}\right\rangle:=\left|a_{i}\right\rangle \otimes\left|b_{k}\right\rangle$
- Bipartition table

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$

- Bipartition operators for each pair of columns

$$
S_{k l}:=\sum_{i=1 \ldots d_{A}}\left|a_{i}, b_{k}\right\rangle\left\langle a_{i}, b_{l}\right|=I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|
$$

- State reduction $\rho \longmapsto \quad \sum \operatorname{tr}\left(S_{k l} \rho\right)\left|b_{l}\right\rangle\left\langle b_{k}\right|$

$$
=\sum_{k, l=1 \ldots d_{B}} \operatorname{tr}\left(I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right| \rho\right)\left|b_{l}\right\rangle\left\langle b_{k}\right|=\operatorname{tr}_{A}(\rho)
$$

Beyond Tensor Factors

Beyond Tensor Factors

- Tensor factor case: preserves subspace of operators

$$
\operatorname{span}\left\{I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|\right\}=\left\{I \otimes O_{B} \mid O_{B} \in \mathcal{B}\left(\mathcal{H}_{B}\right)\right\}
$$

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$		
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$		
\vdots	\vdots	\ddots	\vdots		
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$		
\qquad					
\downarrow	\downarrow	an			
b_{1}	b_{2}	\cdots	$b_{d_{B}}$		

Beyond Tensor Factors

- Tensor factor case: preserves subspace of operators
$\operatorname{span}\left\{I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|\right\}=\left\{I \otimes O_{B} \mid O_{B} \in \mathcal{B}\left(\mathcal{H}_{B}\right)\right\}$

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A} A}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$
\downarrow	\downarrow		\downarrow
b_{1}	b_{2}	\cdots	$b_{d_{B}}$

- Coarse-graining: e.g. particle on a lattice
- Group together nearby sites (position + momentum)
- Clear what new Hilbert space is, but not how to embed this in the old one

Beyond Tensor Factors

- Tensor factor case: preserves subspace of operators
span $\left\{I \otimes\left|b_{k}\right\rangle\left\langle b_{l}\right|\right\}=\left\{I \otimes O_{B} \mid O_{B} \in \mathcal{B}\left(\mathcal{H}_{B}\right)\right\}$

a_{1}, b_{1}	a_{1}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
a_{2}, b_{1}	a_{2}, b_{2}	\cdots	$a_{1}, b_{d_{B}}$
\vdots	\vdots	\ddots	\vdots
$a_{d_{A}}, b_{1}$	$a_{d_{A}}, b_{2}$	\cdots	$a_{d_{A}}, b_{d_{B}}$
\downarrow	\downarrow		\downarrow
b_{1}	b_{2}	\cdots	$b_{d_{B}}$

- Coarse-graining: e.g. particle on a lattice
- Group together nearby sites (position + momentum)
- Clear what new Hilbert space is, but not how to embed this in the old one
- Collective observables
- E.g. multiple particles \rightarrow effective particles

Generalized BPTs

Generalized BPTs

- Example: 2 spin $1 / 2$ particles in total spin-z basis

$$
|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,0\rangle
$$

0,0	
$1,+1$	1,0

Generalized BPTs

- Example: 2 spin $1 / 2$ particles in total spin-z basis $|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,0\rangle \quad$| $1,+1$ | 1,0 |
| ---: | ---: |
- Define bipartition operators:

$$
\begin{array}{r}
S_{+1,+1}=|1,+1\rangle\langle 1,+1| \quad S_{+1,0}=|1,+1\rangle\langle 1,0| \quad S_{+1,-1}=|1,+1\rangle\langle 1,-1| \\
S_{0,0}=|0,0\rangle\langle 0,0|+|1,0\rangle\langle 1,0| \quad S_{0,-1}=|1,0\rangle\langle 1,-1| \\
S_{-1,-1}=|1,-1\rangle\langle 1,-1|
\end{array}
$$

Generalized BPTs

- Example: 2 spin $1 / 2$ particles in total spin-z basis $|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,0\rangle \quad$| $1,+1\|1,0\| 1,-1$ |
| ---: | ---: |
- Define bipartition operators:
$S_{+1,+1}=|1,+1\rangle\langle 1,+1| \quad S_{+1,0}=|1,+1\rangle\langle 1,0| \quad S_{+1,-1}=|1,+1\rangle\langle 1,-1|$

$$
S_{0,0}=|0,0\rangle\langle 0,0|+|1,0\rangle\langle 1,0| \quad S_{0,-1}=|1,0\rangle\langle 1,-1|
$$

- State reduction:

$$
S_{-1,-1}=|1,-1\rangle\langle 1,-1|
$$

$$
\rho \longmapsto \sum_{k, l=+1,0,-1} \operatorname{tr}\left(S_{k l} \rho\right)|l\rangle\langle k|
$$

Generalized BPTs

- Example: 2 spin $1 ⁄ 2$ particles in total spin-z basis $|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,0\rangle$
- Define bipartition operators:
$S_{+1,+1}=|1,+1\rangle\langle 1,+1| \quad S_{+1,0}=|1,+1\rangle\langle 1,0| \quad S_{+1,-1}=|1,+1\rangle\langle 1,-1|$

$$
S_{0,0}=|0,0\rangle\langle 0,0|+|1,0\rangle\langle 1,0| \quad S_{0,-1}=|1,0\rangle\langle 1,-1|
$$

- State reduction:

$$
S_{-1,-1}=|1,-1\rangle\langle 1,-1|
$$

$$
\rho \longmapsto \sum_{k, l=+1,0,-1} \operatorname{tr}\left(S_{k l} \rho\right)|l\rangle\langle k|
$$

- Traces out multiplet degree of freedom, preserves information about total spin operators

Generalized BPTs

Generalized BPTs

- We've defined a state-reduction map more general than the partial-trace map.

Generalized BPTs

- We've defined a state-reduction map more general than the partial-trace map.
- A general non-rectangular BPT preserves information in span $\left\{S_{k l}\right\}$, which need not be an algebra (not closed under products)

Generalized BPTs

- We've defined a state-reduction map more general than the partial-trace map.
- A general non-rectangular BPT preserves information in span $\left\{S_{k l}\right\}$, which need not be an algebra (not closed under products)
- E.g. N spin $1 / 2$ particles, N even:

Algebras of Observables

Algebras of Observables

- Specify a set of linear operators:

$$
\mathcal{O}:=\left\{O_{i}\right\}_{i=0 \ldots} \subset \mathcal{M}(d, \mathbb{C})
$$

$$
O_{0}=I
$$

Algebras of Observables

- Specify a set of linear operators:

$$
\mathcal{O}:=\left\{O_{i}\right\}_{i=0 . . .} \subset \mathcal{M}(d, \mathbb{C}) \quad O_{0}=I
$$

- Form the von Neumann algebra $\operatorname{Alg}(\mathcal{O})$

Algebras of Observables

- Specify a set of linear operators:

$$
\mathcal{O}:=\left\{O_{i}\right\}_{i=0 \ldots \ldots} \subset \mathcal{M}(d, \mathbb{C}) \quad O_{0}=I
$$

- Form the von Neumann algebra $\operatorname{Alg}(\mathcal{O})$
- Any vN algebra has a decomposition into irreps

$$
\operatorname{Alg}(\mathcal{O}) \cong \bigoplus_{q=1 \ldots s} I_{m_{q}} \otimes \mathcal{M}\left(n_{q}, \mathbb{C}\right) \quad d=\sum_{q=1}^{s} m_{q} n_{q}
$$

Algebras of Observables

- Specify a set of linear operators:
$\mathcal{O}:=\left\{O_{i}\right\}_{i=0 \ldots} \subset \mathcal{M}(d, \mathbb{C})$
$O_{0}=I$
- Form the von Neumann algebra $\operatorname{Alg}(\mathcal{O})$
- Any vN algebra has a decomposition into irreps
$\operatorname{Alg}(\mathcal{O}) \cong \bigoplus_{q=1 \ldots s} I_{m_{q}} \otimes \mathcal{M}\left(n_{q}, \mathbb{C}\right) \quad d=\sum_{q=1}^{s} m_{q} n_{q}$
- There is an associated decomposition of the Hilbert space, $\mathcal{H}=\bigoplus_{q=1 \ldots s} \mathcal{N}_{q} \otimes \mathcal{M}_{q}$.
- That is, there is some basis for \mathcal{H} where all elements of the algebra are block-diagonal:

$$
\left.\begin{array}{c}
=\left(\begin{array}{cccc}
I_{m_{1}} \otimes A_{1} & & & \\
& I_{m_{2}} \otimes A_{2} & & \\
& & \ddots & \\
& & & I_{m_{s}} \otimes A_{s}
\end{array}\right) \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right)
$$

- The decomposition can be described by a block-diagonal generalized BPT, with each block giving a product basis for a $\mathcal{N}_{q} \otimes \mathcal{M}_{q}$

e_{11}^{q}	e_{12}^{q}	e_{13}^{q}	e_{14}^{q}
e_{21}^{q}	e_{22}^{q}	e_{23}^{q}	e_{24}^{q}
\vdots	\vdots	\vdots	\vdots
$e_{r 1}^{q}$	$e_{r 2}^{q}$	$e_{r 3}^{q}$	$e_{r 4}^{q}$

$$
\longrightarrow \quad \mathcal{N}_{q} \otimes \mathcal{M}_{q}
$$

- The decomposition can be described by a block-diagonal generalized BPT, with each block giving a product basis for a $\mathcal{N}_{q} \otimes \mathcal{M}_{q}$

e_{11}^{q}	e_{12}^{q}	e_{13}^{q}	e_{14}^{q}
e_{21}^{q}	e_{22}^{q}	e_{23}^{q}	e_{24}^{q}
\vdots	\vdots	\vdots	\vdots
$e_{r 1}^{q}$	$e_{r 2}^{q}$	$e_{r 3}^{q}$	$e_{r 4}^{q}$

$$
\longrightarrow \quad \mathcal{N}_{q} \otimes \mathcal{M}_{q}
$$

- The BPOs form a basis spanning $\operatorname{Alg}(\mathcal{O})$, with a simple action under products $S_{k l}^{q} S_{l^{\prime} k^{\prime}}^{q^{\prime}}=\delta_{l l^{\prime}} \delta_{q q^{\prime}} S_{k k^{\prime}}^{q}$

The Algorithm

The Algorithm

- Observables \rightarrow projectors \rightarrow "scattering" \rightarrow graph reduction \rightarrow BPT

The Algorithm

- Observables \rightarrow projectors \rightarrow "scattering" \rightarrow graph reduction \rightarrow BPT
- Spectral decomposition of observables:

$$
T^{i} \xrightarrow{\text { spee. dee. }}\left\{\Pi_{1}^{i} \ldots\right\}
$$

The Algorithm

- Observables \rightarrow projectors \rightarrow "scattering" \rightarrow graph reduction \rightarrow BPT
- Spectral decomposition of observables:

$$
T^{i} \xrightarrow{\text { spee. dee. }}\left\{\Pi_{1}^{i} \ldots\right\}
$$

- "Scatter" products of projectors, i.e. decompose them into new projectors.
$\begin{cases}\Pi^{a} \Pi^{b} \Pi^{a}=\Pi_{1}^{a b}+\sum_{k} \lambda_{k} \Pi_{k}^{a}+0 \Pi_{0}^{a} & \Pi^{a} \\ \Pi^{b} \Pi^{a} \Pi^{b}=\Pi_{1}^{a b}+\sum_{k} \lambda_{k} \Pi_{k}^{b}+0 \Pi_{0}^{b} & \Pi^{b} \xrightarrow{\text { scater }}\left\{\begin{array}{l}\Pi_{1}^{a b}, \Pi_{2}^{a} \ldots \Pi_{0}^{a} \\ \Pi_{1}^{a b}, \Pi_{2}^{b} \ldots \Pi_{0}^{b}\end{array}\right\}\end{cases}$
- Repeat process until all scattering is trivial (projectors reflecting or orthogonal)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Pi^{a} \Pi^{b} \Pi^{a}=\lambda \Pi^{a} \\
\Pi^{b} \Pi^{a} \Pi^{b}=\lambda \Pi^{b}
\end{array}\right. \\
& \begin{cases}\Pi^{a} \Pi^{b} \Pi^{a}=0 \Pi^{a} \\
\Pi^{b} \Pi^{a} \Pi^{b}= & 0 \Pi^{b}\end{cases}
\end{aligned}
$$

- Graph-theoretic interpretation

Π_{3}

Π_{3}

Π_{6}

- Impose conditions on graph: irreducibility and completeness (by adding more projectors if necessary)

Π_{3}

Π_{6}

- Impose conditions on graph: irreducibility and completeness (by adding more projectors if necessary)
- Construct BPT by traversing graph

Applications

Applications

- Error correction

Applications

- Error correction
- Bulk reconstruction

Applications

- Error correction
- Bulk reconstruction
- Quantum gravity

Applications

- Error correction
- Bulk reconstruction
- Quantum gravity
- ...more to come?

Thank you!

Generalized BPT example

$$
\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\} \quad\left| \pm_{i j}\right\rangle:=\frac{|i\rangle \pm|j\rangle}{\sqrt{2}} \quad\left|\phi_{234}\right\rangle=\frac{\sqrt{2}}{\sqrt{3}}|+23\rangle+\frac{1}{\sqrt{3}}|4\rangle
$$

$$
\begin{gathered}
\Pi_{1}^{A}=|1\rangle\langle 1|+|2\rangle\langle 2|+|3\rangle\langle 3| \quad \Pi_{2}^{A}=|4\rangle\langle 4| \quad \Pi^{B}=\left|\phi_{234}\right\rangle\left\langle\phi_{234}\right|+\left|--_{23}\right\rangle\left\langle--_{23}\right| \\
Q_{11}=\Pi_{1}^{A} \Pi^{B} \Pi_{1}^{A}=\Pi_{1}^{A}\left|\phi_{234}\right\rangle\left\langle\phi_{234}\right| \Pi_{1}^{A}+\Pi_{1}^{A}\left|--_{23}\right\rangle\left\langle-{ }_{23}\right| \Pi_{1}^{A}=\frac{2}{3}|+23\rangle\langle+23|+\left|-{ }_{23}\right\rangle\left\langle-{ }_{23}\right| \\
Q_{22}=\Pi_{2}^{A} \Pi^{B} \Pi_{2}^{A}=\frac{1}{3}|4\rangle\langle 4| \\
Q_{12}=\Pi_{1}^{A} \Pi^{B} \Pi_{2}^{A}=\Pi_{1}^{A}\left|\phi_{234}\right\rangle\left\langle\phi_{234}\right| \Pi_{2}^{A}+\Pi_{1}^{A}|-23\rangle\langle-23| \Pi_{2}^{A}=\frac{\sqrt{2}}{3}\left|+{ }_{23}\right\rangle\langle 4| .
\end{gathered}
$$

Collective Observables

- Consider many particles, interacting in some potential (e.g. two bound particles). Say we can only track the center of mass + total momentum.
- We don't have access to measurements that distinguish individual particles. So the observable physics is invariant under permutations of the particles.
- The results BPT is block-diagonal in the irreps of the permutation group (e.g. symmetric vs antisymmetric under exchange of particles.)
- Ex 2: reproduces Clebsch-Gordon decomp for spins

Variational Approach

Variational Approach

- Optimize over possible BPTs

Variational Approach

- Optimize over possible BPTs
- Change of basis states

Variational Approach

- Optimize over possible BPTs
- Change of basis states
- Change of table arrangements

Decoherence

- Zurekian story
- System-environment split
- Pointer basis
- Branching + classical states
- Relies on existence of reduced density matrix + Hamiltonian

Irreducibility

$\Pi_{2} \Pi_{6} \Pi_{1} \Pi_{7} \Pi_{2} \propto S_{22} \stackrel{?}{=} \Pi_{2}$

Completeness

$$
\Pi_{1}+\Pi_{2}+\Pi_{3} \neq I_{c}
$$

$$
\Pi_{4} \propto \Pi_{4} \Pi_{8} \Pi_{4}=\left(I-\Pi_{1}-\Pi_{2}-\Pi_{3}\right) \Pi_{8}\left(I-\Pi_{1}-\Pi_{2}-\Pi_{3}\right)
$$

Reconstruction

