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Introduction

@ The Jackiw-Teitelboim model is a model of gravity coupled to
a scalar field, called the dilaton, in 2D.
— Jackiw 1985, Teitelboim 1983

@ It has gained a lot of attention recently due to its connection
with the Sachdev-Ye-Kitaev model of fermions in 1D.
— Sachdev & Ye 1993, Kitaev 2015

@ Both the models exhibit an identical pattern of symmetry
breaking, and the associated dynamics is governed by a
Schwarzian action.

@ This gives tantalizing hints towards a possible duality between
the two models.
— Maldacena & Stanford 2016



AdS, spacetime (with a varying dilaton) arises as the solution
in the JT model.
— Almheiri & Polchinski 2014; Maldacena, Stanford and Yang 2016

AdS; spacetime is also known to arise as the geometry in the
near-horizon region of near-extremal black holes.

It would be interesting to know how well does the JT model
capture the physics of near-extremal black holes.

As we will illustrate, the thermodynamics and the low-energy
behaviour of near-extremal black holes is well captured by the
JT model.

For concreteness, we will work with the magnetically charged
near-extremal Reissner-Nordstrom black hole in asymptotically
AdS, spacetime.



The Reissner-Nordstrom black hole

@ The RN black hole is a spherically symmetric charged black
hole solution to the Einstein-Maxwell system,
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@ The magnetically charged asymptotically AdS, black hole
solution to the above action is
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@ The CC is related to the AdS radius via A = —%.



Extremal limit

@ The black hole has two horizons r.
@ In the extremal limit the two horizons coalesce ry = rp.

@ The mass and charge at extremality are

Iy 2r,% 5 _rﬁ 3rf2,
Mextw(”y) Qoe = g \ 1t 12

rrhrh < 1 the near-horizon metric is

(]

To the leading order in

ds2:—(

r—rh)zdtz L% dr? 2 (462 in20 dp?
R (e A A

@ This has the form of AdS, x S2, with
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Near-extremal limit and thermodynamics

@ In the near-extremal scenario, the two horizons are located at
ry = rp £ dry, with %” < 1.

@ Jry measures the splitting of the two horizons near extremality.

@ The temperature is proportional to dr,, T = % ~ %

@ By computing the Euclidean onshell action with appropriate
counter terms, one can compute the entropy of the black
hole, which meets the Bekenstein entropy formula,
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@ The near-extremal free energy is then given by

2
™y

BF = BM =S = fMex — BOM — —~




Response to a scalar: 4-point function

@ The next thing we want to compute is the response of the
system to a scalar, which is free except gravitational
interactions

S= % /d4x\/§ [(00)? + m*c?] .

@ The bulk scalar is dual to a scalar operator in the boundary
theory, and we will be interested in the four point function of
this operator at low-energies.

@ For simplicity, we will assume spherical symmetry.

@ As we will see, the non-trivial contribution at low energy
comes from the near-horizon region of the geometry.



Let's make the notion of low-energy precise.

Consider the near-horizon AdS, x S§2 region of the black hole.
Construct a screen at r = r. in this region which acts like a
boundary for this region, so

Near-horizon limit: r‘r;hr” <1,

Near AdS; boundary: r%’” > 1,

For consistency we work with large black holes, r, > L, L,
o can be mode expanded as o(t,r) = [ dwe“to(w,r)

o(w, r) satisfies the equation of motion
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r>ry, r= oo
~~ AdS,; AdS, boundary

@ By low energy, we mean frequencies that satisfy % < m for

r>re.
@ In the region r. < r < oo the e.o.m. of ¢ then implies a
solution of the factorized form,

with f(r) being a power law.



@ We now compute the four point function.
@ The scalar stress tensor sources fluctuations in the metric,

(r) (1 + hog) d23,

1
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where we have chosen the gauge h, = hy, = 0.

@ The interaction term is given by
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@ Using the e.o.m. of metric fluctuations and the conservation
of the stress tensor, this can be written as
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@ Interestingly, in the low-energy limit, due to the factorized
form of ¢ the region r. < r < oo only gives rise to a contact
term in the onshell action!

@ The non-trivial contribution comes only from the near-horizon

region rp < r < r¢
2a’b

@ The term =37 > 1 in this region.
2
@ Using the coordinate z = rith the onshell action becomes
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Jackiw-Teitelboim gravity

@ The JT model is a 2D model of dilaton gravity,
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@ The first term is topological.

@ The e.o.m. of the dilaton sets the background to be AdS,,
L3 2
ds® = z—z(dt +dz?), with Ay = I

The non-trivial dynamics thus arises from the boundary term.



Euclidean AdS, is like a disk.
Let the boundary be located at z = §, with § — 0.

Small fluctuations of the boundary corresponding to time
reparametrizations change it to z(1 — €(t)) = 9.

The coordinate transformation
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z=23(1+€(t)).
puts the boundary at Z = §, and changes the metric to
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The fluctuations are now parametrized by hy;.



@ The metric equation of motion from the JT action gives the
2
solution for the dilaton to be ¢ = —2

rhz”
e To compute the action for the modes €(t) we substitute the
solutions for ¢ and the metric in the action. This gives
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@ A more careful analysis keeping higher orders in ¢ yields
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JT thermodynamics

@ Let us now look at the thermodynamics in the JT model.
@ The black hole metric is
L3 rh ((r*rh)2 _ 2G5M)
12 rp

2

@ Onshell the topological term reproduces the correct extremal
entropy, 7r2/G.

@ The complete onshell action gives the free energy

2
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which is in agreement with the near-extremal result (up to the
extremal piece)!



4-point function in JT gravity

We now compute the response to a scalar in the JT model.

The scalar action is

S, = 2mr? / d’x\/g ((00)? + m*a?)

The scalar does not couple to the dilaton. Thus the dilaton
e.o.m. still sets the background to be AdSs.

However there is a non-trivial coupling between the scalar and
the boundary fluctuations,

Sy = 4rrf / dt (El(t)ZTzz + €(t) sz) :

The action for €(t) is the Schwarzian action described earlier.



@ Integrating out €(t) from the combined action and performing
simplifications using the stress tensor conservation etc. gives
the onshell action
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@ This matches with the low-energy limit of the near-extremal
computation!

@ JT gravity thus provides a good description of the
thermodynamics and low-energy dynamics for near-extremal
RN black holes.



Dimensional reduction from 4D to 2D

Before we conclude, let's see why JT is able to capture the
low-energy dynamics so well.

We perform dimensional reduction of the 4D theory assuming
spherical symmetry.

@ Take the 4D action

ST G/d‘*x\/ /% f\ /d3x\[K /d4x\/§F2

@ We reduce it to 2D by taking the metric ansatz
ds? = gas(t, r) dx@dx” + ®2(t, r) dQ2

@ We also need a Weyl rescaling gog — ¢ 8ap-



@ We restrict the action to the near-horizon region. For this, we

insert
(D = rh(l + Qb)

and expand up to quadratic order in ¢.
@ The resulting action is

2 2
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@ This has additional terms on top of JT.



@ The e.o.m. of ¢ implies that the geometry departs from AdS,
at same order as ¢,

R =N+ O(9)

@ However, the additional bulk and boundary terms present
contain onshell an extra factor of f—i and are therefore
suppressed compared to the terms linear in ¢.

@ This explains why JT captures the near-horizon low energy

dynamics to the leading order in rL so well.
h



Concluding comments

o It would be interesting to know how universally does JT
capture the low energy dynamics of other near-extremal black
holes.

o JT works well even when:
— Departures from spherical symmetry are included
— The matter coupled to the black hole is also charged
- - - Moitra, Trivedi & Vishal 2018; Sachdev 2019
— Rotating Kerr black holes in 4D and 5D
- - - Moitra, Sake, Trivedi & Vishal 2019

o Currently investigating rotating BTZ black holes.
- - - Kundu, Shukla & Vishal (work in progress)
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