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Introduction

The Jackiw-Teitelboim model is a model of gravity coupled to
a scalar field, called the dilaton, in 2D.
– Jackiw 1985, Teitelboim 1983

It has gained a lot of attention recently due to its connection
with the Sachdev-Ye-Kitaev model of fermions in 1D.
– Sachdev & Ye 1993, Kitaev 2015

Both the models exhibit an identical pattern of symmetry
breaking, and the associated dynamics is governed by a
Schwarzian action.

This gives tantalizing hints towards a possible duality between
the two models.
– Maldacena & Stanford 2016



AdS2 spacetime (with a varying dilaton) arises as the solution
in the JT model.
– Almheiri & Polchinski 2014; Maldacena, Stanford and Yang 2016

AdS2 spacetime is also known to arise as the geometry in the
near-horizon region of near-extremal black holes.

It would be interesting to know how well does the JT model
capture the physics of near-extremal black holes.

As we will illustrate, the thermodynamics and the low-energy
behaviour of near-extremal black holes is well captured by the
JT model.

For concreteness, we will work with the magnetically charged
near-extremal Reissner-Nordström black hole in asymptotically
AdS4 spacetime.



The Reissner-Nordström black hole

The RN black hole is a spherically symmetric charged black
hole solution to the Einstein-Maxwell system,

S =
1

16πG

∫
d4x
√
−g
(
R − 2Λ

)
− 1

4G

∫
d4x
√
−g FµνF

µν

The magnetically charged asymptotically AdS4 black hole
solution to the above action is

ds2 = −a(r)2 dt2 +
1

a(r)2
dr2 + b(r)2 (dθ2 + sin2θ dϕ2),

a(r)2 = 1− 2GM

r
+

4πQ2

r2
+

r2

L2
, b(r) = r , Fθϕ = Q sin θ.

The CC is related to the AdS radius via Λ = − 3
L2 .



Extremal limit

The black hole has two horizons r±.

In the extremal limit the two horizons coalesce r± = rh.

The mass and charge at extremality are

Mext =
rh
G

(
1 +

2r2
h

L2

)
, Q2

ext =
r2
h

4π

(
1 +

3r2
h

L2

)
To the leading order in r−rh

rh
� 1 the near-horizon metric is

ds2 = −(r − rh)2

L2
2

dt2 +
L2

2

(r − rh)2
dr2 + r2

h (dθ2 + sin2θ dϕ2)

This has the form of AdS2 × S2, with

L2 ≈
L√
6
, RS2 = rh.



Near-extremal limit and thermodynamics

In the near-extremal scenario, the two horizons are located at
r± = rh ± δrh, with δrh

rh
� 1.

δrh measures the splitting of the two horizons near extremality.

The temperature is proportional to δrh, T ≡ 1
β ∼

δrh
L2

By computing the Euclidean onshell action with appropriate
counter terms, one can compute the entropy of the black
hole, which meets the Bekenstein entropy formula,

S =
πr2

+

G

The near-extremal free energy is then given by

βF = βM − S ≈ βMext − βδM −
πr2

h

G



Response to a scalar: 4-point function

The next thing we want to compute is the response of the
system to a scalar, which is free except gravitational
interactions

S =
1

2

∫
d4x
√
g
[
(∂σ)2 + m2σ2

]
.

The bulk scalar is dual to a scalar operator in the boundary
theory, and we will be interested in the four point function of
this operator at low-energies.

For simplicity, we will assume spherical symmetry.

As we will see, the non-trivial contribution at low energy
comes from the near-horizon region of the geometry.



Let’s make the notion of low-energy precise.

Consider the near-horizon AdS2 × S2 region of the black hole.
Construct a screen at r = rc in this region which acts like a
boundary for this region, so

Near-horizon limit: rc−rh
rh

� 1,

Near AdS2 boundary: rc−rh
L2

� 1,

For consistency we work with large black holes, rh � L, L2

σ can be mode expanded as σ(t, r) =
∫
dω e iωtσ(ω, r)

σ(ω, r) satisfies the equation of motion

1

r2
∂r
(
r2a2∂rσ

)
−
(
ω2

a2
+ m2

)
σ = 0.



≈ AdS2 × S2

r = rh r = rc

h
or

iz
o

n
r � rh
≈ AdS4

r =∞
AdS4 boundary

r

By low energy, we mean frequencies that satisfy ω
a � m for

r > rc .

In the region rc < r <∞ the e.o.m. of σ then implies a
solution of the factorized form,

σ ∼ σ̂(t)f (r)

with f (r) being a power law.



We now compute the four point function.

The scalar stress tensor sources fluctuations in the metric,

ds2 = a2(r) (1 + htt) dt
2 +

1

a2(r)
dr2 + b2(r) (1 + hθθ) dΩ 2

2 ,

where we have chosen the gauge hrr = htr = 0.

The interaction term is given by

I =
1

4

∫
d4x
√
g δgµν Tµν

Using the e.o.m. of metric fluctuations and the conservation
of the stress tensor, this can be written as

I = −8π2G

∫
dt dr

(
2a2b3

b′
Trr

1

∂t
Ttr − a2b2

(
1 +

2a′b

b′a

)
Ttr

1

∂2
t

Ttr

)



Interestingly, in the low-energy limit, due to the factorized
form of σ the region rc < r <∞ only gives rise to a contact
term in the onshell action!

The non-trivial contribution comes only from the near-horizon
region rh < r < rc

The term 2a′b
ab′ � 1 in this region.

Using the coordinate z =
L2

2
r−rh the onshell action becomes

I ' 16π2G
r3
h

L2
2

∫
dt

∫ ∞
δc

dz z

(
Ttz

1

∂2
t

Ttz − z Ttz
1

∂t
Tzz

)

with δc =
L2

2
rc−rh .



Jackiw-Teitelboim gravity

The JT model is a 2D model of dilaton gravity,

SJT =−
r2
h

4G

(∫
d2x
√
g R + 2

∫
bdy

√
γ K

)
−

r2
h

2G

(∫
d2x
√
g φ (R − Λ2) + 2

∫
bdy

√
γ φK

)
.

The first term is topological.

The e.o.m. of the dilaton sets the background to be AdS2,

ds2 =
L2

2

z2
(dt2 + dz2), with Λ2 = − 2

L2
2

.

The non-trivial dynamics thus arises from the boundary term.



Euclidean AdS2 is like a disk.

Let the boundary be located at z = δ, with δ → 0.

Small fluctuations of the boundary corresponding to time
reparametrizations change it to z(1− ε(t)) = δ.

The coordinate transformation

t = t̂ + ε(t̂)− ẑ2ε′′(t̂)

2
, z = ẑ(1 + ε′(t̂)).

puts the boundary at ẑ = δ, and changes the metric to

ds2 =
L2

2

ẑ2
(1 + htt) dt̂

2 +
L2

2

ẑ2
dẑ2, with htt = −ε′′′(t̂)ẑ2

The fluctuations are now parametrized by htt .



The metric equation of motion from the JT action gives the

solution for the dilaton to be φ =
L2

2
rhz

.

To compute the action for the modes ε(t) we substitute the
solutions for φ and the metric in the action. This gives

S = − rhL
2
2

G

∫
bdy

ε′′′(t).

A more careful analysis keeping higher orders in ε yields

S = − rhL
2
2

G

∫
bdy

Sch[ε(t)],

where for t → t + ε(t) ≡ f (t), Sch[ε(t)] = −1
2

(f ′′)2

(f ′)2 +
(
f ′′

f ′

)′
.



JT thermodynamics

Let us now look at the thermodynamics in the JT model.

The black hole metric is

ds2 =

(
(r − rh)2

L2
2

− 2GδM

rh

)
dt2 +

dr2(
(r−rh)2

L2
2
− 2GδM

rh

)
Onshell the topological term reproduces the correct extremal
entropy, πr2

h/G .

The complete onshell action gives the free energy

βF = −βδM −
πr2

h

G

which is in agreement with the near-extremal result (up to the
extremal piece)!



4-point function in JT gravity

We now compute the response to a scalar in the JT model.

The scalar action is

Sσ = 2πr2
h

∫
d2x
√
g
(
(∂σ)2 + m2σ2

)
The scalar does not couple to the dilaton. Thus the dilaton
e.o.m. still sets the background to be AdS2.

However there is a non-trivial coupling between the scalar and
the boundary fluctuations,

Sσ = 4πr2
h

∫
dt
(
ε′(t)zTzz + ε(t)Ttz

)
.

The action for ε(t) is the Schwarzian action described earlier.



Integrating out ε(t) from the combined action and performing
simplifications using the stress tensor conservation etc. gives
the onshell action

SOS =
16π2Gr3

h

L2
2

∫
d2x z Ttz

1

∂2
t

(Ttz − z∂tTzz)

This matches with the low-energy limit of the near-extremal
computation!

JT gravity thus provides a good description of the
thermodynamics and low-energy dynamics for near-extremal
RN black holes.



Dimensional reduction from 4D to 2D

Before we conclude, let’s see why JT is able to capture the
low-energy dynamics so well.

We perform dimensional reduction of the 4D theory assuming
spherical symmetry.

Take the 4D action

S = − 1

16πG

∫
d4x

√
ĝ
(
R̂−2Λ̂

)
− 1

8πG

∫
d3x

√
γ̂K (3)+

1

4G

∫
d4x

√
ĝF 2

We reduce it to 2D by taking the metric ansatz

ds2 = gαβ(t, r) dxαdxβ + Φ2(t, r) dΩ 2
2

We also need a Weyl rescaling gαβ → rh
Φ gαβ .



We restrict the action to the near-horizon region. For this, we
insert

Φ = rh(1 + φ)

and expand up to quadratic order in φ.

The resulting action is

S =− r2
h

4G

(∫
d2x
√
g R + 2

∫
bdy

√
γ K

)
− r2

h

2G

∫
d2x
√
g φ (R − Λ2)

+
3r2

h κ

G L2
2

∫
d2x
√
g φ2 − r2

h

G

∫
bdy

√
γ φK − r2

h

2G

∫
bdy

√
γ φ2K .

This has additional terms on top of JT.



The e.o.m. of φ implies that the geometry departs from AdS2

at same order as φ,

R = Λ2 +O(φ)

However, the additional bulk and boundary terms present
contain onshell an extra factor of L2

rh
, and are therefore

suppressed compared to the terms linear in φ.

This explains why JT captures the near-horizon low energy
dynamics to the leading order in L

rh
so well.



Concluding comments

It would be interesting to know how universally does JT
capture the low energy dynamics of other near-extremal black
holes.

JT works well even when:
– Departures from spherical symmetry are included
– The matter coupled to the black hole is also charged
- - - Moitra, Trivedi & Vishal 2018; Sachdev 2019

– Rotating Kerr black holes in 4D and 5D
- - - Moitra, Sake, Trivedi & Vishal 2019

Currently investigating rotating BTZ black holes.
- - - Kundu, Shukla & Vishal (work in progress)
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