An index for interacting topological phases

Sven Bachmann

The University of British Columbia

Alex Bols, Wojciech De Roeck, Martin Fraas

Theory Canada XIV

May 2019

Classifying quantum phases

Goal: Classify phases of matter at T = 0

- ▷ Landau: use a local order parameter
- Not complete (Wen-Niu, AKLT, Kitaev, Levin-Wen): local disorder but topological order
- ▷ Replace the local order parameter by a stable discrete index
- E.g.: Hall conductance $(\mathbb{Z}, \mathbb{Z}/q)$, indices of topological insulators $(\mathbb{Z}, \mathbb{Z}_2)$
- This talk: An index associated to ground states and a U(1)-charge
 - ▷ for interacting electrons
 - $\triangleright\,$ taking rational values in \mathbb{Z}/q
 - $\triangleright\,$ where q is the topological degeneracy

Motivation: Laughlin's argument

The Hall conductance is an index (in the punctured plane geometry):

$$2\pi\sigma_{\rm H} = \operatorname{Ind}(P, UPU^*)$$

= Tr((P - UPU^*)^3)
= dimKer(P - UPU^* - 1) - dimKer(P - UPU^* + 1) \in \mathbb{Z}

where P is the Fermi projection and U adds a unit of flux

Sven (UBC

Charge transport across a line

Kitaev's flow of a unitary

$$\mathcal{F}(U) = \sum_{j \le 0, k > 0} \left(|U_{jk}|^2 - |U_{kj}|^2 \right)$$

Example, translation: $U = \begin{pmatrix} \ddots & \ddots & & \\ & 0 & 1 & \\ & & 0 & 1 & \\ & & & \ddots & \ddots \end{pmatrix} \implies \mathcal{F}(U) = 1$

Local index

Interpretation: U transports 1 charge across the fiducial line j=0 Formal computation:

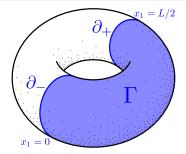
$$\mathcal{F}(U) = \operatorname{Tr}(U^*QU(1-Q)) - \operatorname{Tr}(U^*(1-Q)UQ) = \operatorname{Tr}(U^*QU-Q)$$

Quantum lattice system

 $\triangleright\,$ Charge at site x is $q_x = a_x^* a_x$ and the charge on a half space

$$Q = \sum_{1 \le x_1 < L/2} q_x$$

▷ Unitary operator U transporting charge: translation, flux insertion,...



Continuity equation: The charge transport operator

$$T = U^* Q U - Q$$

is supported around $\partial_{-} \cup \partial_{+}$, and

$$T = T_{-} + T_{+} + \mathcal{O}(L^{-\infty})$$

Ground states

- \boldsymbol{P} is a ground state projection
 - ▷ of a charge conserving Hamiltonian

 $\mathrm{i}[H,Q_Z]$ supported in ∂Z

- \triangleright having a gap above the ground state energy
- with topological order

 $q = \operatorname{Rank}(P)$

and any local observable A acts trivially in the ground state space:

$$||PAP - c(A)P|| = \mathcal{O}(L^{-\infty})$$

Invariance under U:

$$[U,P] = \mathcal{O}(L^{-\infty})$$

(translation invariance, insertion of a unit of flux,...)

Sven (UBC

The index

Theorem. [B.-Bols-De Roeck-Fraas] Assume Q, U, P as above. For any ground state $\Omega = P\Omega$, Then,

$$\operatorname{dist}(q\langle\Omega|T_{-}|\Omega\rangle,\mathbb{Z}) = \mathcal{O}(L^{-\infty})$$

- $\triangleright \text{ Recall: } U^*QU Q = T_- + T_+ + \mathcal{O}(L^{-\infty})$ q is the degeneracy
- \triangleright If the limit exists, define

$$\operatorname{Ind}(U,\Omega) := \lim_{L \to \infty} \langle \Omega, T_{-}\Omega \rangle \in \frac{\mathbb{Z}}{q}$$

- $\triangleright~$ Stable under perturbations of U
- $\triangleright\,$ Stable under perturbations of P that keep the gap open

Physical realizations: Choose U

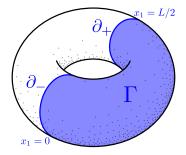
- ▷ Adding flux (Laughlin pump): fractional Hall conductance
- ▷ Translation: Lieb-Schultz-Mattis theorem, fractional filling
- Adiabatic evolution along a cycle: Thouless pump, fractional charge transport
- $\triangleright~\mathsf{Propagator}~U=\exp(\mathrm{i} t H)$: Bloch's theorem, vanishing currents

All of that in an interacting setting, assuming a gap

Local charge fluctuations

Useful fact: One can construct K_\pm localized near ∂_\pm such that

$$[Q - K_{-} - K_{+}, P] = \mathcal{O}(L^{-\infty})$$



 $\triangleright \overline{Q} := Q - K_{-} - K_{+}$ leaves the ground state space invariant $\triangleright Q \rightarrow \overline{Q}$ affects only fluctuations:

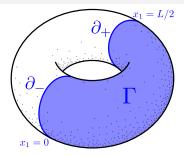
$$\operatorname{Tr}(P(U^*\overline{Q}U - \overline{Q})_-) = \operatorname{Tr}(P(U^*QU - Q)_-)$$

Local charge fluctuations

Useful fact:

One can construct K_\pm localized near ∂_\pm such that

$$[Q - K_{-} - K_{+}, P] = \mathcal{O}(L^{-\infty})$$



 $\triangleright \ \overline{Q} := Q - K_{-} - K_{+} \text{ leaves the ground state space invariant}$ $\triangleright \ Q \to \overline{Q} \text{ affects only fluctuations:}$

$$\operatorname{Tr}(P(U^*\overline{Q}U - \overline{Q})_-) = \operatorname{Tr}(P(U^*QU - Q)_-)$$

How?

$$K_{-} + K_{+} = \int_{-\infty}^{\infty} W(t) \mathrm{e}^{\mathrm{i}tH_{s}} \mathrm{i}[H,Q] \mathrm{e}^{-\mathrm{i}tH_{s}} dt$$

Full counting statistics

The operator

$$Z(\lambda) = U^* \mathrm{e}^{\mathrm{i}\lambda\overline{Q}} U \mathrm{e}^{-\mathrm{i}\lambda\overline{Q}}$$

 $\triangleright\,$ acts on the range of P

▷ factorizes

$$Z(\lambda) \simeq Z_{-}(\lambda)Z_{+}(\lambda) \qquad Z_{-}(\lambda) = e^{i\lambda \overline{Q}_{-}^{U}}e^{-i\lambda \overline{Q}_{-}}$$

Key actor:

$$\chi(\lambda) = \det(PZ_{-}(\lambda)P)$$

describes the statistics of charge transport across ∂_-

A winding number

We claim that

$$-i\chi'(\lambda) \simeq Tr(PT_{-})\chi(\lambda)$$

Follows from

$$\frac{d}{d\lambda}\det(A(\lambda)) = \operatorname{Tr}(A(\lambda)^{-1}A'(\lambda))\det(A(\lambda))$$

and some algebra Hence

$$\chi(\lambda) \simeq \mathrm{e}^{\mathrm{i}\lambda q \langle T_- \rangle_P}$$

and it suffices to show

 $\chi(2\pi)\simeq 1$

to prove the theorem

Remark on braiding

With the assumption of topological order:

$$PT_-P \simeq \frac{n}{q}P$$

so we actually showed

$$\mathcal{U}^*\mathcal{V}^*\mathcal{U}\mathcal{V} \simeq e^{2\pi i \frac{n}{q}} \qquad (\mathcal{U} = PUP, \ \mathcal{V} = Pe^{2\pi i \overline{Q}_-}P)$$

as an equality between unitary matrices on the ground state space

Braiding relation

 Irreducible representation is q-dimensional: fractional Hall conductance related to topological ground state degeneracy (see also Wen-Niu 1990)

Concluding remarks

- > Fractional charge transport in interacting setting
- Combining translation and flux increase: constraint between Hall conductance and filling factor
- ▷ Generalizes to the case of discrete local symmetry breaking
- Display Topological quantum numbers without topology