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Classifying quantum phases

Goal: Classify phases of matter at T = 0

. Landau: use a local order parameter

. Not complete (Wen-Niu, AKLT, Kitaev, Levin-Wen): local disorder
but topological order

. Replace the local order parameter by a stable discrete index

E.g.: Hall conductance (Z,Z/q), indices of topological insulators (Z,Z2)

This talk: An index associated to ground states and a U(1)-charge

. for interacting electrons

. taking rational values in Z/q

. where q is the topological degeneracy
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Motivation: Laughlin’s argument

The Laughlin pump:
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The Hall conductance is an index (in the punctured plane geometry):

2πσH = Ind(P,UPU∗)

= Tr((P − UPU∗)3)
= dimKer(P − UPU∗ − 1)− dimKer(P − UPU∗ + 1) ∈ Z

where P is the Fermi projection and U adds a unit of flux
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Charge transport across a line

Kitaev’s flow of a unitary

F(U) =
∑

j≤0,k>0

(
|Ujk|2 − |Ukj |2

)

Example, translation: U =



. . . . . .
0 1

0 1
0 1

. . . . . .

 =⇒ F(U) = 1

Local index
Interpretation: U transports 1 charge across the fiducial line j = 0
Formal computation:

F(U) = Tr(U∗QU(1−Q))− Tr(U∗(1−Q)UQ) = Tr(U∗QU −Q)
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Quantum lattice system

. Charge at site x is qx = a∗xax and the
charge on a half space

Q =
∑

1≤x1<L/2

qx

. Unitary operator U transporting
charge: translation, flux insertion,...

. Continuity equation: The charge transport operator

T = U∗QU −Q

is supported around ∂− ∪ ∂+, and

T = T− + T+ +O(L−∞)
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Ground states

P is a ground state projection

. of a charge conserving Hamiltonian

i[H,QZ ] supported in ∂Z

. having a gap above the ground state energy

. with topological order
q = Rank(P )

and any local observable A acts trivially in the ground state space:

‖PAP − c(A)P‖ = O(L−∞)

Invariance under U :
[U,P ] = O(L−∞)

(translation invariance, insertion of a unit of flux,...)
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The index

Theorem. [B.-Bols-De Roeck-Fraas]
Assume Q,U, P as above. For any ground state Ω = PΩ, Then,

dist
(
q〈Ω|T−|Ω〉,Z

)
= O(L−∞)

. Recall: U∗QU −Q = T− + T+ +O(L−∞)
q is the degeneracy

. If the limit exists, define

Ind(U,Ω) := lim
L→∞

〈Ω, T−Ω〉∈ Z
q

. Stable under perturbations of U

. Stable under perturbations of P that keep the gap open
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Various topological indices

Physical realizations: Choose U

. Adding flux (Laughlin pump): fractional Hall conductance

. Translation: Lieb-Schultz-Mattis theorem, fractional filling

. Adiabatic evolution along a cycle: Thouless pump, fractional charge
transport

. Propagator U = exp(itH): Bloch’s theorem, vanishing currents

All of that in an interacting setting, assuming a gap
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Local charge fluctuations

Useful fact:
One can constructK± localized near ∂± such
that

[Q−K− −K+, P ] = O(L−∞)

. Q := Q−K− −K+ leaves the ground state space invariant

. Q→ Q affects only fluctuations:

Tr(P (U∗QU −Q)−) = Tr(P (U∗QU −Q)−)
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Local charge fluctuations

Useful fact:
One can constructK± localized near ∂± such
that

[Q−K− −K+, P ] = O(L−∞)

. Q := Q−K− −K+ leaves the ground state space invariant

. Q→ Q affects only fluctuations:

Tr(P (U∗QU −Q)−) = Tr(P (U∗QU −Q)−)

How?

K− +K+ =

∫ ∞
−∞

W (t)eitHs i[H,Q]e−itHsdt
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Full counting statistics

The operator
Z(λ) = U∗eiλQUe−iλQ

. acts on the range of P

. factorizes

Z(λ) ' Z−(λ)Z+(λ) Z−(λ) = eiλQ
U
−e−iλQ−

Key actor:
χ(λ) = det(PZ−(λ)P )

describes the statistics of charge transport across ∂−
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A winding number

We claim that
−iχ′(λ) ' Tr(PT−)χ(λ)

Follows from

d

dλ
det(A(λ)) = Tr(A(λ)−1A′(λ)) det(A(λ))

and some algebra
Hence

χ(λ) ' eiλq〈T−〉P

and it suffices to show
χ(2π) ' 1

to prove the theorem
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Remark on braiding

With the assumption of topological order:

PT−P '
n

q
P

so we actually showed

U∗V∗UV ' e
2πin

q (U = PUP, V = P e2πiQ−P )

as an equality between unitary matrices on the ground state space

. Braiding relation

. Irreducible representation is q-dimensional: fractional Hall conductance
related to topological ground state degeneracy
(see also Wen-Niu 1990)
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Concluding remarks

. Fractional charge transport in interacting setting

. Combining translation and flux increase:
constraint between Hall conductance and filling factor

. Generalizes to the case of discrete local symmetry breaking

. Topological quantum numbers without topology
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