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In this talk I’ll basically summarise some of the recent works on
topological field theory and knots that I have started. The talk will
be based on the following papers.

Knot Invariants and M-Theory I: Hitchin Equations,
Chern-Simons Theory and Surface Operators, K.D, Veronica
Errasti Diez, P. Ramadevi and Radu Tatar 1608.05128.

A Companion to Knot Invariants and M-Theory I: Proofs and
Derivations, Veronica Errasti Diez, 1702.07366

Fivebranes and Knots, Edward Witten, 1101.3216

Electric Magnetic Duality and the Geometric Langland
Programme, Anton Kapustin and Edward Witten,
hep-th/0604151

Knot Invariants and M-Theory II, K.D, Veronica Errasti Diez, K.
Gopala Krishna, Rohit Jain, P. Ramadevi and Radu Tatar To
appear
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Cast of characters

Veronica Errasti Diez
P. Ramadevi
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Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



Outline of the talk

A very brief introduction to knot theory and Chern-Simons
theory

Topological field theory from branes in string theory

A M-theory theory realization of the topological set-up

Getting the full topological action from M-theory

Towards knot theory from M-theory

Discussions and conclusions

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 4 /

48



What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot
differs in that the ends are joined so that it cannot be undone.
One example is the trefoil.

Other examples can be tabulated in the following way
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Thus mathematically, a knot is an embedding of a circle in
three-dimensional Euclidean space R3 or the three sphere S3

Two knots are defined to be equivalent if there is an ambient
isotopy between them
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To verify this one needs to first define the important concept of
projection

namely, a knot in R3 (or in a 3-sphere S3) can be
projected onto a plane R2 (respectively a sphere S2). This
projection is always regular (“injective”) except at finite number
of crossing points, i.e the points are not collinear.

A knot diagram is thus a 4-valent planar graph with over/under
decorated vertices. One important thing is the so-called frame
knots which is an embedding of a solid torus in S3. The
projection is:
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One of the way to understand the equivalence between the knots
is developed by Kurt Reidemeister
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Who famously developed the three Reidemeister moves

which in more colloquial term may be expressed as
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The power of Reidemeister moves can be seen from the following
example.

Consider the following exercise.

Thus using untwist, poke and slide moves, allows us to see the
above simplification!
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All these were the consequence of the topological nature of the
knots.

In fact it was J. W. Alexander who showed that knot theory
forms an important ingredient in the study of topology and
topological invariants.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 11 /

48



All these were the consequence of the topological nature of the
knots. In fact it was J. W. Alexander who showed that knot theory
forms an important ingredient in the study of topology and
topological invariants.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 11 /

48



All these were the consequence of the topological nature of the
knots. In fact it was J. W. Alexander who showed that knot theory
forms an important ingredient in the study of topology and
topological invariants.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 11 /

48



However it was not until Vaughn Jones found a way to distinguish
between non-isotopic knots that the subject attained a powerful
dimension.

Jones provided a criteria to compute polynomial invariants for
knots that continues to be used today to distinguish knots. These
polynomials are called the Jones polynomials.
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The technique used by Jones to compute the polynomials use
something called the Skein relations.

This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above

, namely why Laurent
polynomial? and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial?

and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and

why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and why integer coeffcients?

In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



The technique used by Jones to compute the polynomials use
something called the Skein relations. This expresses the knot
invariants as Laurent polynomials in

√
t with integer coefficients.

The natural question you might be asking is whether physics can
provide answer to the two facts listed above, namely why Laurent
polynomial? and why integer coeffcients? In fact around 1989
one physicist was busy trying to answer the first question.

Dasgupta (McGill) String Theory
Vancouver: May 31, 2019; 2:30 pm 13 /

48



What Witten concluded was something interesting.

A
Chern-Simons gauge theory based on any compact group G
provides a natural framework to study knots and their invariants.

In particular, this approach gives a three-dimensional definition
for knots and links. For any knot K carrying representation R of
gauge group G, the expectation value of Wilson loop operator

W (K, R) = TrRP exp
(∮

K
A
)

gives the knot invariants in the following suggestive way

J(K, R, q) = 〈W (K, R)〉

=

∫
DA exp

[
ik
∫

R3
Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)]

TrRP exp
(∮

K
A
)
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Furthermore, what Witten concluded was even more fascinating.

That is, for any knot K, the Wilson loop computation does lead to
a knot polynomial of the form

J(K, q) =
∑

n

anqn

where an could be integers and q, which can now be identified
with

√
t from Jones, is given by the Chern-Simons coupling

constant k and some dual Coxeter number h of G as

q = exp
(

2πi
k + h

)
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with

√
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It turns out, the Jones polynomials correspond to taking
fundamental representations of SU(2) for G.

Once we take the
fundamental representations for SU(N) we get the, so called,
HOMFLY-PT polynomials. Additionally, the skein relation obtained
from SU(N) Chern-Simons theory resembles skein relation of
Alexander polynomial when N = 0.

Similarly for the fundamental representation of SO(N), we get the
Kauffman polynomials.
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Besides the well known polynomials, we can obtain many new
generalised knot invariants

, all by using the Chern-Simons
theory! For all these works, Witten got the 1990 Fields Medal in
Mathematics alongwith Jones, Drinfeld and Mori.
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However despite these developments, something was still not
clear.

Why are the an integers? In the usual Wilson loop
computations there are no a-priori reasons for an to be integers.
So their integer behavior was a big mystery. This was eventually
understood, at least from mathematics point of view, by the works
of Mikhail Khovanov in 2000.
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Khovanov’s observation is easy to state (at least).

He started by
defining another polynomial, aptly called the Khovanov
polynomial, for a knot K in the following way

Kh(K, q, t) =
∑
i,j

t iqjdim Hi,j

where H(i , j) is some "bi-graded chain complex". Off hand this
doesn’t look anything like the nice Jones polynomial that we had
earlier. However note that for t = −1 and gauge group SU(2) this
does give the Jones polynomials. Interestingly for t = −1 this is
almost like an alternate sum of certain "Hodge" numbers, giving
us a "q-graded" Euler characteristics!
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This means the an coefficients of the Jones polynomial can be
viewed as dimensions of certain vector spaces.

This would at
least give a reason why the coefficients of Jones polynomals are
integers!

The above statement also means that the study of Jones
polynomials is now equivalent to study of certain vector spaces
with a given Euler characteristics, in other words a study of
homology theory! These ideas were further developed by Lev
Rozansky and are now called the Khovanov-Rozansky
homologies.
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All this is great, and hopefully explains many things.

However it
is getting too technical and too confusing!

Is there an easier way to understand and appreciate some of the
above-mentioned mathematical ideas? This is where string
theory comes to our rescue!
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The next phase began around 2006 when Witten wrote a gigantic
paper with Anton Kapustin explaining how various interesting
properties of geometric Langland programme appear from the
known strong-weak coupling dualities in type IIB theory.

Despite the size, it is an immensely readable paper and discusses
many interesting facets of S-duality related to the Euclideanized
version of N = 4 supersymmetric YM theory.
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This N = 4 appears from D3 branes in type IIB theory, and has
gauge fields Aa with four components and six scalar fields ϕa

,
two of which could be decoupled. For simplicity we will ignore
the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message
from the paper. This appears as localization equations when we
study the Euclideanized path integrals in the theory

Fab + εabcdDcϕd + 2[ϕa, ϕb] = 0

This is called the
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the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message
from the paper. This appears as localization equations when we
study the Euclideanized path integrals in the theory.

Fab + εabcdDcϕd = 0

This is called the Bogomolnyi
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This N = 4 appears from D3 branes in type IIB theory, and has
gauge fields Aa with four components and six scalar fields ϕa,
two of which could be decoupled. For simplicity we will ignore
the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message
from the paper. This appears as localization equations when we
study the Euclideanized path integrals in the theory.

Fab + 2[ϕa, ϕb] = 0

This is called the Hitchin
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This N = 4 appears from D3 branes in type IIB theory, and has
gauge fields Aa with four components and six scalar fields ϕa,
two of which could be decoupled. For simplicity we will ignore
the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message
from the paper. This appears as localization equations when we
study the Euclideanized path integrals in the theory.
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This N = 4 appears from D3 branes in type IIB theory, and has
gauge fields Aa with four components and six scalar fields ϕa,
two of which could be decoupled. For simplicity we will ignore
the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message
from the paper. This appears as localization equations when we
study the Euclideanized path integrals in the theory.

Fab + εabcdDcϕd + 2[ϕa, ϕb] = 0

Or the BHN i.e Bogomolnyi-Hitchin-Nahm equation

given by
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What has BHN equation anything to do with knot theory?

This is
exactly the question that Witten asked in 2011 and he found an
interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct
a set-up that allows knots to exist in three-dimensions. This of
course has to be a part of the N = 4 set-up discussed above.

Now choose an instanton number n for a gauge group SU(2), and
for the given choice of the instanton number, solve the BHN
equations. Let us call the number of solutions of the BHN
equation to be an.

This an is exactly the an that appears in the Jones polynomial

J(K, q) =
∑

n

anqn
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Many questions now arise: What set-up are we talking about?
How do we distinguish the knots using instanton numbers?
Where is the topological field theory? Why on earth would
solutions of certain differential equations have anything to do
with knot polynomials?
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At least we now have some understanding to answer all the
questions that I raised here.

However the margin (of time) is too
small to answer them here! So I’ll only answer two questions:
What set-up are we talking about? and Where is the topological
field theory?

Unfortunately the answers to the other questions will require
many more lectures! However one thing is for sure: If an are the
number of solutions of the BHN equations, they will be integers
and so would at least explain why the coeffcients in the Jones
polynomial are integers.

This doesn’t entail the full Khovanov homology, but is a step
towards that direction.
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The set-up devised by Witten to study knots and knot invariants
is surprisingly simple.

The configuration can be depicted by the
following brane construction with NS5-brane and D3-branes
intersecting in a three-dimensional space.

The dotted lines being the NS5-brane and the solid lines are the
D3-branes. The intersection is three-dimensional i.e along
(x0, x1, x2) directions in Euclidean space.
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Although the brane set-up is simple, the topological theory that
appears at the intersection boundary is much more non-trivial to
derive.

The analysis proceeds via the following steps.

Supersymmetric Wilson loops are only possible at the
boundary once the gauge theory θ angle is switched on.
These Wilson loops give rise to knots in the boundary theory.

The three-dimensional boundary action gets contributions
from the bulk D3-branes as well as from the intersection
region. The derivation of the intersection region
contributions is way more subtle. Ignoring this will lead to
errorenous results.

Under topological twisting, the contributions from the bulk is
non-trivial. Topological twisting is the procedure of
converting the four scalar fields to one-forms so that they
transform in a similar fashion with the gauge fields. As
mentioned earlier, the other two scalar fields get decoupled.
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The procedure to derive the full three-dimensional boundary
action, which is both topological and supersymmetric, is a long
and tedious procedure, but the final result is relatively
straightforward.

This is given by a Chern-Simons theory

Sb = Tr
(

A ∧ dA +
2i
3

A ∧ A ∧ A
)

You might ask what’s the big deal here? While without doing any
computations one might have predicted the boundary 3d theory
to be of the Chern-Simons kind, but the subtlety is that the gauge
field that appears in Sb is not the Chern-Simons gauge field A!
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In fact without doing the computations, we would have never
been able to see that the twisted scalar fields (which we now call
φ) would combine with the Chern-Simons gauge field A to give us
the A that appears in Sb as

A = A+ tφ

where t is a parameter that distinguishes various topological field
theories, i.e for every choice of t there exists a topological field
theory.

Note that under twisting, the N = 4 scalar fields action gets a
contribution from the intersection region in such a way so as to
tag along with the gauge field A to give us precisely a
Chern-Simons action Sb! And that’s the miracle!
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The contribution from the intersection region of the NS5-D3
system that Witten found is rather subtle

and, although this
entails most of the key discussions of topological field theory in
this set-up, is rather hard to visualize. Is there a simpler way to
see this contribution and derive the boundary theory?

The answer turns out to be yes, by dualizing the Witten’s set-up
to M-theory. Once we insert another parallel NS5-brane at the
other end of the D3-branes and dualize this to M-theory, the
branes disappear and are converted to geometry in M-theory!
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The θ angle dualize to G-fluxes in M-theory, so together we have
only geometry and fluxes in M-theory.

The precise M-theory
configuration turns out to be a non-compact seven-manifold that
is a N-centered warped Taub-NUT space TNN , fibered over a
compact three-dimensional base Σ3.

M7 = TNN × Σ3

The geometry in M-theory is parametrized by certain warp factors
(F1(r), F̃2(r), F3(r), F4(r , ..)) and the θ-term by θ. Most of the
warp-factors are functions of the radial coordinate r , while F4 is
more generic.
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One might now worry that, since M7 is non-compact, one cannot
simply “compactify” M-theory on M7.

However, our M7 is special
because it happens to have normalizable harmonic two-forms.
How does this help us?

It turns out that one may effectively compactify the
eleven-dimensional supergravity action over these harmonic
forms to get an abelian gauge theory in four-dimensions!

How do we get the full non-abelian theory? The non-abelian
enhancement occur exactly by the M2-brane states wrapped on
the vanishing two-cycles of TNN !

The story is very detailed, but thankfully straightforward.
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After the dust settles, the four-dimensional Hamiltonian is easy to
write down. This is given by

which, as described in [11], can be made by picking the three scalar fields in
−→
X and

one scalar field from
−→
Y (which we take here as ϕ3). This means the complex σ field

of [11], for our case will become:

σ ≡ Ar + iAφ1 . (3.157)

The Gauss law constraint and the identification of the scalar fields will lead us to
compute the Hamiltonian from the total effective action (3.153). Isolating the same
scalar A3, the expression for the Hamiltonian, for the case when c2 = 0 in (3.153),
can be expressed as sum of squares of various terms in the following way:

H =

�
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, (3.158)

where QE and QM are the electric and the magnetic charges respectively, which
will be determined later; dim G is the dimension of the group; and δ ≡ (α, ψ),
(y2, y3) ≡ (r, φ1). Most of coefficients appearing in (3.158) have been determined

scalars in (3.282) later. Furthermore to avoid cluttering of symbols we will use the same symbol to
denote the twisted and the untwisted scalars of [11], unless mentioned otherwise. It should hopefully
be clear from the context which one is meant.
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The Hamiltonian, despite its little formidable appearance, is
actually simple.

It is written as

H = Sum of squares + QE + QM

Minimizing the Hamiltonian would mean putting the sum of
square pieces to zero. A part of these give us

D0A3 = 0,
(√

b0k −
√

c3k

)2
[A3, ϕk ]2 = 0(√

c11 −
√

cα3
)2

(DαA3)
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(√
c12 −

√
cψ3
)2

(DψA3)
2 = 0(√

c0r −
√

a2
)2

[A3,Ar ]
2 = 0,

(√
c0φ1 −

√
a4
)2

[A3,Aφ1 ]
2 = 0.
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Since A3 and ϕk are non-zero, these equations can only be
satisfied if there exist some equality between the coefficients.

Lets do some checks.

c11(θ) = R3 sec θ

∫ ∞
0

dr e2φ0

√
F1F̃2F3

F̃2 − F3
ln

∣∣∣∣∣∣
√

F̃2 +

√
F̃2 − F3√

F̃2 −
√

F̃2 − F3

∣∣∣∣∣∣
cα3(θ) = R3 sec θ

∫ ∞
0

dr
e2φ0

H2

√
F1F̃2F3

F̃2 − F3
ln

∣∣∣∣∣∣
√

F̃2 +

√
F̃2 − F3√

F̃2 −
√

F̃2 − F3

∣∣∣∣∣∣ .
They are equal if and only if H2 = 1 , where H2 ≡ H2(F̃1, F2, F3, F4)
is another warp factor.
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Lets make one more check, this time using other coefficients that
appeared in the minimizing equations.

b0k (θ) = 2R3 sec θ

∫ ∞
0

dr e2φ0

(
F3

H2

)1/3√
F1F̃2 Θ12

c3k (θ) = 2R3 sec θ

∫ ∞
0

dr
e2φ0

H2

(
F3

H2

)1/3√
F̃2F1Θ12

One can easily check that they are identical if and only of H2 = 1.
In fact one may check all the minimizing equations and find
similar conclusion! Thus these equations are exactly solved with
H2 = 1!
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But there are more to it. Looking back at the Hamiltonian again
we get another class of solutions that look like

Fab + εabcdDcϕd + 2[ϕa, ϕb] = 0

Which are exactly the BHN equations! This way we recover many
of the results of Kapustin and Witten using simple Hamiltonian
formalism.

However the challenge is to get the boundary topological theory
after twisting. Can we get this right?
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This time the miracle happens from the electric and the magnetic
charges QE and QM respectively.

After twisting the electric and
the magnetic charges combine with the θ term of the
four-dimensional action to give us

Sbnd = k
∫

W
Tr
(
A ∧ dA+

2i
3
A ∧A ∧A

)
+

∫
W

Tr

{
2d1F ∧ φ +

2i
3

(
d3

1
k2

)
φ ∧ φ ∧ φ +

(
d2

1
k

)
φ ∧ dAφ

}

= k
∫

W
Tr
{[
A+

(
d1

k

)
φ

]
∧ d

[
A+

(
d1

k

)
φ

]
+

2i
3

[
A+

(
d1

k

)
φ

]
∧
[
A+

(
d1

k

)
φ

]
∧
[
A+

(
d1

k

)
φ

]}
,
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This is in fact exactly the topological theory that we have been
looking for and now, from M-theory, takes the following form

Sbnd = k
∫

W
Tr
(
Ad ∧ dAd +

2i
3
Ad ∧ Ad ∧ Ad

)
with Ad is exactly the modified gauge field that we had in the
Kapustin-Witten set-up, namely

Ad ≡ A+

(
d1

k

)
φ

where k and d1 are determined from the warp-factors Fi appearing
in our M-theory set-up discussed earlier.
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However many things, for example how to compute the knot
invariants, connection to Ooguri-Vafa set-up etc., still remain to
be discussed, but that is for another talk. For more details on
these and other topics you may look up our paper on the subject.
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Conclusion and discussion

It all started way back in 1989 with the intriguing work of Witten
on connecting the Jones polynomials with Chern-Simons theory

which has lead us to make further connections to the geometric
Langland programme, Khovanov-Rozanski homology, opers and
conformal blocks (that we did not discuss here).
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Our attempt here was to show that M-theory entails many of the
interesting physics that appear in these elaborate mathematical
set-ups.

A full elaboration of the M-theory framework might reveal
even deeper connections between the various branches of
mathematics. Thus everything should be connected by a knot!

Hopefully it was not so confusing or boring! Thanks for listening.
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