

An Introduction to Knot Theory from String Theory

In this talk I'll basically summarise some of the recent works on topological field theory and knots that I have started. The talk will be based on the following papers.

In this talk I'll basically summarise some of the recent works on topological field theory and knots that I have started. The talk will be based on the following papers.

- Knot Invariants and M-Theory I: Hitchin Equations, Chern-Simons Theory and Surface Operators, K.D, Veronica Errasti Diez, P. Ramadevi and Radu Tatar 1608.05128.
- A Companion to Knot Invariants and M-Theory I: Proofs and Derivations, Veronica Errasti Diez, 1702.07366
- Fivebranes and Knots, Edward Witten, 1101.3216
- Electric Magnetic Duality and the Geometric Langland Programme, Anton Kapustin and Edward Witten, hep-th/0604151
- Knot Invariants and M-Theory II, K.D, Veronica Errasti Diez, K. Gopala Krishna, Rohit Jain, P. Ramadevi and Radu Tatar To appear

Cast of characters

Cast of characters

Veronica Errasti Diez

Cast of characters

Veronica Errasti Diez

P. Ramadevi

Cast of characters

Veronica Errasti Diez

P. Ramadevi

Radu Tatar

Outline of the talk

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory
- Topological field theory from branes in string theory

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory
- Topological field theory from branes in string theory
- A M-theory theory realization of the topological set-up

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory
- Topological field theory from branes in string theory
- A M-theory theory realization of the topological set-up
- Getting the full topological action from M-theory

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory
- Topological field theory from branes in string theory
- A M-theory theory realization of the topological set-up
- Getting the full topological action from M-theory
- Towards knot theory from M-theory

Outline of the talk

- A very brief introduction to knot theory and Chern-Simons theory
- Topological field theory from branes in string theory
- A M-theory theory realization of the topological set-up
- Getting the full topological action from M-theory
- Towards knot theory from M-theory
- Discussions and conclusions

What are the mathematical knots?

What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot differs in that the ends are joined so that it cannot be undone.

What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot differs in that the ends are joined so that it cannot be undone. One example is the trefoil.

What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot differs in that the ends are joined so that it cannot be undone. One example is the trefoil.

What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot differs in that the ends are joined so that it cannot be undone. One example is the trefoil.

Other examples can be tabulated in the following way

What are the mathematical knots?

Inspired by daily life in shoelaces and rope, a mathematical knot differs in that the ends are joined so that it cannot be undone. One example is the trefoil.

Other examples can be tabulated in the following way

Thus mathematically, a knot is an embedding of a circle in three-dimensional Euclidean space \mathbf{R}^{3} or the three sphere S^{3}

Thus mathematically, a knot is an embedding of a circle in three-dimensional Euclidean space \mathbf{R}^{3} or the three sphere \mathbf{S}^{3}

Thus mathematically, a knot is an embedding of a circle in three-dimensional Euclidean space \mathbf{R}^{3} or the three sphere \mathbf{S}^{3}

Two knots are defined to be equivalent if there is an ambient isotopy between them

Thus mathematically, a knot is an embedding of a circle in three-dimensional Euclidean space \mathbf{R}^{3} or the three sphere \mathbf{S}^{3}

Two knots are defined to be equivalent if there is an ambient isotopy between them

Trefial Knot

To verify this one needs to first define the important concept of projection

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane \mathbf{R}^{2} (respectively a sphere \mathbf{S}^{2}).

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane R^{2} (respectively a sphere S^{2}). This projection is always regular ("injective") except at finite number of crossing points, i.e the points are not collinear.

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane R^{2} (respectively a sphere \mathbf{S}^{2}). This projection is always regular ("injective") except at finite number of crossing points, i.e the points are not collinear.

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane R^{2} (respectively a sphere \mathbf{S}^{2}). This projection is always regular ("injective") except at finite number of crossing points, i.e the points are not collinear.

A knot diagram is thus a 4-valent planar graph with over/under decorated vertices.

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane R^{2} (respectively a sphere S^{2}). This projection is always regular ("injective") except at finite number of crossing points, i.e the points are not collinear.

A knot diagram is thus a 4-valent planar graph with over/under decorated vertices. One important thing is the so-called frame knots which is an embedding of a solid torus in S^{3}. The projection is:

To verify this one needs to first define the important concept of projection namely, a knot in R^{3} (or in a 3-sphere S^{3}) can be projected onto a plane R^{2} (respectively a sphere S^{2}). This projection is always regular ("injective") except at finite number of crossing points, i.e the points are not collinear.

A knot diagram is thus a 4-valent planar graph with over/under decorated vertices. One important thing is the so-called frame knots which is an embedding of a solid torus in S^{3}. The projection is:

One of the way to understand the equivalence between the knots is developed by Kurt Reidemeister

One of the way to understand the equivalence between the knots is developed by Kurt Reidemeister

Who famously developed the three Reidemeister moves

Who famously developed the three Reidemeister moves

Who famously developed the three Reidemeister moves

Who famously developed the three Reidemeister moves

Who famously developed the three Reidemeister moves

which in more colloquial term may be expressed as

Who famously developed the three Reidemeister moves

which in more colloquial term may be expressed as
I.

twist
II.

unpoke

and
and

untwist

poke
slide

The power of Reidemeister moves can be seen from the following example.

The power of Reidemeister moves can be seen from the following example. Consider the following exercise.

The power of Reidemeister moves can be seen from the following example. Consider the following exercise.

Exercise 3: Find a sequence of Reidemeister moves that untangle this nasty knot.

Solution:

The power of Reidemeister moves can be seen from the following example. Consider the following exercise.

Exercise 3: Find a sequence of Reidemeister moves that untangle this nasty knot.

Solution:

Thus using untwist, poke and slide moves, allows us to see the above simplification!

All these were the consequence of the topological nature of the knots.

All these were the consequence of the topological nature of the knots. In fact it was J. W. Alexander who showed that knot theory forms an important ingredient in the study of topology and topological invariants.

All these were the consequence of the topological nature of the knots. In fact it was J. W. Alexander who showed that knot theory forms an important ingredient in the study of topology and topological invariants.

However it was not until Vaughn Jones found a way to distinguish between non-isotopic knots that the subject attained a powerful dimension.

However it was not until Vaughn Jones found a way to distinguish between non-isotopic knots that the subject attained a powerful dimension.

However it was not until Vaughn Jones found a way to distinguish between non-isotopic knots that the subject attained a powerful dimension.

Jones provided a criteria to compute polynomial invariants for knots that continues to be used today to distinguish knots.

However it was not until Vaughn Jones found a way to distinguish between non-isotopic knots that the subject attained a powerful dimension.

Jones provided a criteria to compute polynomial invariants for knots that continues to be used today to distinguish knots. These polynomials are called the Jones polynomials.

The technique used by Jones to compute the polynomials use something called the Skein relations.

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients.

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above, namely why Laurent polynomial?

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above, namely why Laurent polynomial? and

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above, namely why Laurent polynomial? and why integer coeffcients?

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above, namely why Laurent polynomial? and why integer coeffcients? In fact around 1989 one physicist was busy trying to answer the first question.

The technique used by Jones to compute the polynomials use something called the Skein relations. This expresses the knot invariants as Laurent polynomials in \sqrt{t} with integer coefficients. The natural question you might be asking is whether physics can provide answer to the two facts listed above, namely why Laurent polynomial? and why integer coeffcients? In fact around 1989 one physicist was busy trying to answer the first question.

What Witten concluded was something interesting.

> What Witten concluded was something interesting. A Chern-Simons gauge theory based on any compact group G provides a natural framework to study knots and their invariants.

What Witten concluded was something interesting. A Chern-Simons gauge theory based on any compact group G provides a natural framework to study knots and their invariants.

In particular, this approach gives a three-dimensional definition for knots and links. For any knot K carrying representation R of gauge group G, the expectation value of Wilson loop operator

What Witten concluded was something interesting. A Chern-Simons gauge theory based on any compact group G provides a natural framework to study knots and their invariants.

In particular, this approach gives a three-dimensional definition for knots and links. For any knot K carrying representation R of gauge group G, the expectation value of Wilson loop operator

$$
W(\mathbf{K}, R)=\operatorname{Tr}_{R} P \exp \left(\oint_{\mathbf{K}} A\right)
$$

What Witten concluded was something interesting. A Chern-Simons gauge theory based on any compact group G provides a natural framework to study knots and their invariants.

In particular, this approach gives a three-dimensional definition for knots and links. For any knot K carrying representation R of gauge group G, the expectation value of Wilson loop operator

$$
W(\mathbf{K}, R)=\operatorname{Tr}_{R} P \exp \left(\oint_{\mathbf{K}} A\right)
$$

gives the knot invariants in the following suggestive way

What Witten concluded was something interesting. A
Chern-Simons gauge theory based on any compact group G provides a natural framework to study knots and their invariants.

In particular, this approach gives a three-dimensional definition for knots and links. For any knot K carrying representation R of gauge group G, the expectation value of Wilson loop operator

$$
W(\mathbf{K}, R)=\operatorname{Tr}_{R} P \exp \left(\oint_{\mathbf{K}} A\right)
$$

gives the knot invariants in the following suggestive way

$$
J(\mathbf{K}, R, q)=\langle W(\mathbf{K}, R)\rangle
$$

$$
=\int \mathcal{D} A \exp \left[i k \int_{\mathbf{R}^{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right] \operatorname{Tr}_{R} P \exp \left(\oint_{\mathbf{K}} A\right)
$$

Furthermore, what Witten concluded was even more fascinating.

Furthermore, what Witten concluded was even more fascinating. That is, for any knot K, the Wilson loop computation does lead to a knot polynomial of the form

Furthermore, what Witten concluded was even more fascinating. That is, for any knot K, the Wilson loop computation does lead to a knot polynomial of the form

$$
J(\mathbf{K}, q)=\sum_{n} a_{n} q^{n}
$$

Furthermore, what Witten concluded was even more fascinating. That is, for any knot K, the Wilson loop computation does lead to a knot polynomial of the form

$$
J(\mathbf{K}, q)=\sum_{n} a_{n} q^{n}
$$

where a_{n} could be integers and q, which can now be identified with \sqrt{t} from Jones, is given by the Chern-Simons coupling constant k and some dual Coxeter number h of G as

Furthermore, what Witten concluded was even more fascinating. That is, for any knot K, the Wilson loop computation does lead to a knot polynomial of the form

$$
J(\mathbf{K}, q)=\sum_{n} a_{n} q^{n}
$$

where a_{n} could be integers and q, which can now be identified with \sqrt{t} from Jones, is given by the Chern-Simons coupling constant k and some dual Coxeter number h of G as

$$
q=\exp \left(\frac{2 \pi i}{k+h}\right)
$$

It turns out, the Jones polynomials correspond to taking fundamental representations of $S U(2)$ for G.

It turns out, the Jones polynomials correspond to taking fundamental representations of $S U(2)$ for G. Once we take the fundamental representations for $S U(N)$ we get the, so called, HOMFLY-PT polynomials.

It turns out, the Jones polynomials correspond to taking fundamental representations of $S U(2)$ for G. Once we take the fundamental representations for $S U(N)$ we get the, so called, HOMFLY-PT polynomials. Additionally, the skein relation obtained from $S U(N)$ Chern-Simons theory resembles skein relation of Alexander polynomial when $N=0$.

It turns out, the Jones polynomials correspond to taking fundamental representations of $S U(2)$ for G. Once we take the fundamental representations for $S U(N)$ we get the, so called, HOMFLY-PT polynomials. Additionally, the skein relation obtained from $S U(N)$ Chern-Simons theory resembles skein relation of Alexander polynomial when $N=0$.

Similarly for the fundamental representation of $S O(N)$, we get the Kauffman polynomials.

Besides the well known polynomials, we can obtain many new generalised knot invariants

Besides the well known polynomials, we can obtain many new generalised knot invariants, all by using the Chern-Simons theory!

Besides the well known polynomials, we can obtain many new generalised knot invariants, all by using the Chern-Simons theory! For all these works, Witten got the 1990 Fields Medal in Mathematics alongwith Jones, Drinfeld and Mori.

Besides the well known polynomials, we can obtain many new generalised knot invariants, all by using the Chern-Simons theory! For all these works, Witten got the 1990 Fields Medal in Mathematics alongwith Jones, Drinfeld and Mori.

However despite these developments, something was still not clear.

However despite these developments, something was still not clear. Why are the a_{n} integers?

However despite these developments, something was still not clear. Why are the a_{n} integers? In the usual Wilson loop computations there are no a-priori reasons for a_{n} to be integers. So their integer behavior was a big mystery.

However despite these developments, something was still not clear. Why are the a_{n} integers? In the usual Wilson loop computations there are no a-priori reasons for a_{n} to be integers. So their integer behavior was a big mystery. This was eventually understood, at least from mathematics point of view, by the works of Mikhail Khovanov in 2000.

However despite these developments, something was still not clear. Why are the a_{n} integers? In the usual Wilson loop computations there are no a-priori reasons for a_{n} to be integers. So their integer behavior was a big mystery. This was eventually understood, at least from mathematics point of view, by the works of Mikhail Khovanov in 2000.

Khovanov's observation is easy to state (at least).

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

$$
\operatorname{Kh}(\mathbf{K}, q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} H_{i, j}
$$

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

$$
\mathrm{Kh}(\mathbf{K}, q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} H_{i, j}
$$

where $H(i, j)$ is some "bi-graded chain complex".

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

$$
\mathrm{Kh}(\mathbf{K}, q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} H_{i, j}
$$

where $H(i, j)$ is some "bi-graded chain complex". Off hand this doesn't look anything like the nice Jones polynomial that we had earlier.

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

$$
\mathrm{Kh}(\mathbf{K}, q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} H_{i, j}
$$

where $H(i, j)$ is some "bi-graded chain complex". Off hand this doesn't look anything like the nice Jones polynomial that we had earlier. However note that for $t=-1$ and gauge group $S U(2)$ this does give the Jones polynomials.

Khovanov's observation is easy to state (at least). He started by defining another polynomial, aptly called the Khovanov polynomial, for a knot K in the following way

$$
\mathrm{Kh}(\mathbf{K}, q, t)=\sum_{i, j} t^{i} q^{j} \operatorname{dim} H_{i, j}
$$

where $H(i, j)$ is some "bi-graded chain complex". Off hand this doesn't look anything like the nice Jones polynomial that we had earlier. However note that for $t=-1$ and gauge group $S U(2)$ this does give the Jones polynomials. Interestingly for $t=-1$ this is almost like an alternate sum of certain "Hodge" numbers, giving us a "q-graded" Euler characteristics!

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces.

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces. This would at least give a reason why the coefficients of Jones polynomals are integers!

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces. This would at least give a reason why the coefficients of Jones polynomals are integers!

The above statement also means that the study of Jones polynomials is now equivalent to study of certain vector spaces with a given Euler characteristics

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces. This would at least give a reason why the coefficients of Jones polynomals are integers!

The above statement also means that the study of Jones polynomials is now equivalent to study of certain vector spaces with a given Euler characteristics, in other words a study of homology theory!

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces. This would at least give a reason why the coefficients of Jones polynomals are integers!

The above statement also means that the study of Jones polynomials is now equivalent to study of certain vector spaces with a given Euler characteristics, in other words a study of homology theory! These ideas were further developed by Lev Rozansky and are now called the Khovanov-Rozansky homologies.

This means the a_{n} coefficients of the Jones polynomial can be viewed as dimensions of certain vector spaces. This would at least give a reason why the coefficients of Jones polynomals are integers!

The above statement also means that the study of Jones polynomials is now equivalent to study of certain vector spaces with a given Euler characteristics, in other words a study of homology theory! These ideas were further developed by Lev Rozansky and are now called the Khovanov-Rozansky homologies.

All this is great, and hopefully explains many things.

All this is great, and hopefully explains many things. However it is getting too technical and too confusing!

All this is great, and hopefully explains many things. However it is getting too technical and too confusing!

All this is great, and hopefully explains many things. However it is getting too technical and too confusing!

Is there an easier way to understand and appreciate some of the above-mentioned mathematical ideas?

All this is great, and hopefully explains many things. However it is getting too technical and too confusing!

Is there an easier way to understand and appreciate some of the above-mentioned mathematical ideas? This is where string theory comes to our rescue!

The next phase began around 2006 when Witten wrote a gigantic paper with Anton Kapustin explaining how various interesting properties of geometric Langland programme appear from the known strong-weak coupling dualities in type IIB theory.

The next phase began around 2006 when Witten wrote a gigantic paper with Anton Kapustin explaining how various interesting properties of geometric Langland programme appear from the known strong-weak coupling dualities in type IIB theory.

The next phase began around 2006 when Witten wrote a gigantic paper with Anton Kapustin explaining how various interesting properties of geometric Langland programme appear from the known strong-weak coupling dualities in type IIB theory.

The next phase began around 2006 when Witten wrote a gigantic paper with Anton Kapustin explaining how various interesting properties of geometric Langland programme appear from the known strong-weak coupling dualities in type IIB theory.

The next phase began around 2006 when Witten wrote a gigantic paper with Anton Kapustin explaining how various interesting properties of geometric Langland programme appear from the known strong-weak coupling dualities in type IIB theory.

Despite the size, it is an immensely readable paper and discusses many interesting facets of S-duality related to the Euclideanized version of $\mathcal{N}=4$ supersymmetric YM theory.

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled.

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper.

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

This is called the

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory.

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d} \quad=0
$$

This is called the Bogomolnyi

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory.

$$
\mathcal{F}_{a b} \quad+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

This is called the Hitchin

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory.

$$
\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

This is called the Nahm

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory.

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

Or the BHN i.e Bogomolnyi-Hitchin-Nahm equation

This $\mathcal{N}=4$ appears from D3 branes in type IIB theory, and has gauge fields \mathcal{A}_{a} with four components and six scalar fields φ_{a}, two of which could be decoupled. For simplicity we will ignore the fermionic pieces of the theory.

The work is dense, but for us there is one take-home message from the paper. This appears as localization equations when we study the Euclideanized path integrals in the theory.

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

Or the BHN i.e Bogomolnyi-Hitchin-Nahm equation given by

What has BHN equation anything to do with knot theory?

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions. This of course has to be a part of the $\mathcal{N}=4$ set-up discussed above.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions. This of course has to be a part of the $\mathcal{N}=4$ set-up discussed above.

Now choose an instanton number n for a gauge group $S U(2)$, and for the given choice of the instanton number, solve the BHN equations.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions. This of course has to be a part of the $\mathcal{N}=4$ set-up discussed above.

Now choose an instanton number n for a gauge group $S U(2)$, and for the given choice of the instanton number, solve the BHN equations. Let us call the number of solutions of the BHN equation to be a_{n}.

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions. This of course has to be a part of the $\mathcal{N}=4$ set-up discussed above.

Now choose an instanton number n for a gauge group $S U(2)$, and for the given choice of the instanton number, solve the BHN equations. Let us call the number of solutions of the BHN equation to be a_{n}.

This a_{n} is exactly the a_{n} that appears in the Jones polynomial

What has BHN equation anything to do with knot theory? This is exactly the question that Witten asked in 2011 and he found an interesting answer. The procedure goes via few steps.

Imagine in the Kapustin-Witten framework we somehow construct a set-up that allows knots to exist in three-dimensions. This of course has to be a part of the $\mathcal{N}=4$ set-up discussed above.

Now choose an instanton number n for a gauge group $S U(2)$, and for the given choice of the instanton number, solve the BHN equations. Let us call the number of solutions of the BHN equation to be a_{n}.

This a_{n} is exactly the a_{n} that appears in the Jones polynomial

$$
J(\mathbf{K}, q)=\sum_{n} a_{n} q^{n}
$$

Many questions now arise

Many questions now arise: What set-up are we talking about?

Many questions now arise: What set-up are we talking about? How do we distinguish the knots using instanton numbers?

Many questions now arise: What set-up are we talking about? How do we distinguish the knots using instanton numbers? Where is the topological field theory?

Many questions now arise: What set-up are we talking about? How do we distinguish the knots using instanton numbers? Where is the topological field theory? Why on earth would solutions of certain differential equations have anything to do with knot polynomials?

At least we now have some understanding to answer all the questions that I raised here.

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So l'll only answer two questions

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So l'll only answer two questions: What set-up are we talking about?

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So l'll only answer two questions: What set-up are we talking about? and

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So l'll only answer two questions: What set-up are we talking about? and Where is the topological field theory?

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So I'll only answer two questions: What set-up are we talking about? and Where is the topological field theory?

Unfortunately the answers to the other questions will require many more lectures!

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So I'll only answer two questions: What set-up are we talking about? and Where is the topological field theory?

Unfortunately the answers to the other questions will require many more lectures! However one thing is for sure

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So I'll only answer two questions: What set-up are we talking about? and Where is the topological field theory?

Unfortunately the answers to the other questions will require many more lectures! However one thing is for sure: If a_{n} are the number of solutions of the BHN equations, they will be integers and so would at least explain why the coeffcients in the Jones polynomial are integers.

At least we now have some understanding to answer all the questions that I raised here. However the margin (of time) is too small to answer them here! So I'll only answer two questions: What set-up are we talking about? and Where is the topological field theory?

Unfortunately the answers to the other questions will require many more lectures! However one thing is for sure: If a_{n} are the number of solutions of the BHN equations, they will be integers and so would at least explain why the coeffcients in the Jones polynomial are integers.

This doesn't entail the full Khovanov homology, but is a step towards that direction.

The set-up devised by Witten to study knots and knot invariants is surprisingly simple.

The set-up devised by Witten to study knots and knot invariants is surprisingly simple. The configuration can be depicted by the following brane construction with NS5-brane and D3-branes intersecting in a three-dimensional space.

The set-up devised by Witten to study knots and knot invariants is surprisingly simple. The configuration can be depicted by the following brane construction with NS5-brane and D3-branes intersecting in a three-dimensional space.

The set-up devised by Witten to study knots and knot invariants is surprisingly simple. The configuration can be depicted by the following brane construction with NS5-brane and D3-branes intersecting in a three-dimensional space.

The dotted lines being the NS5-brane and the solid lines are the D3-branes. The intersection is three-dimensional i.e along (x_{0}, x_{1}, x_{2}) directions in Euclidean space.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region. The derivation of the intersection region contributions is way more subtle.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region. The derivation of the intersection region contributions is way more subtle. Ignoring this will lead to errorenous results.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region. The derivation of the intersection region contributions is way more subtle. Ignoring this will lead to errorenous results.
- Under topological twisting, the contributions from the bulk is non-trivial.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region. The derivation of the intersection region contributions is way more subtle. Ignoring this will lead to errorenous results.
- Under topological twisting, the contributions from the bulk is non-trivial. Topological twisting is the procedure of converting the four scalar fields to one-forms so that they transform in a similar fashion with the gauge fields.

Although the brane set-up is simple, the topological theory that appears at the intersection boundary is much more non-trivial to derive. The analysis proceeds via the following steps.

- Supersymmetric Wilson loops are only possible at the boundary once the gauge theory θ angle is switched on. These Wilson loops give rise to knots in the boundary theory.
- The three-dimensional boundary action gets contributions from the bulk D3-branes as well as from the intersection region. The derivation of the intersection region contributions is way more subtle. Ignoring this will lead to errorenous results.
- Under topological twisting, the contributions from the bulk is non-trivial. Topological twisting is the procedure of converting the four scalar fields to one-forms so that they transform in a similar fashion with the gauge fields. As mentioned earlier, the other two scalar fields get decoupled.

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward.

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward. This is given by a Chern-Simons theory

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward. This is given by a Chern-Simons theory

$$
S_{b}=\operatorname{Tr}\left(A \wedge d A+\frac{2 i}{3} A \wedge A \wedge A\right)
$$

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward. This is given by a Chern-Simons theory

$$
S_{b}=\operatorname{Tr}\left(A \wedge d A+\frac{2 i}{3} A \wedge A \wedge A\right)
$$

You might ask what's the big deal here?

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward. This is given by a Chern-Simons theory

$$
S_{b}=\operatorname{Tr}\left(A \wedge d A+\frac{2 i}{3} A \wedge A \wedge A\right)
$$

You might ask what's the big deal here? While without doing any computations one might have predicted the boundary 3d theory to be of the Chern-Simons kind

The procedure to derive the full three-dimensional boundary action, which is both topological and supersymmetric, is a long and tedious procedure, but the final result is relatively straightforward. This is given by a Chern-Simons theory

$$
S_{b}=\operatorname{Tr}\left(A \wedge d A+\frac{2 i}{3} A \wedge A \wedge A\right)
$$

You might ask what's the big deal here? While without doing any computations one might have predicted the boundary 3d theory to be of the Chern-Simons kind, but the subtlety is that the gauge field that appears in S_{b} is not the Chern-Simons gauge field \mathcal{A} !

In fact without doing the computations, we would have never been able to see that the twisted scalar fields (which we now call ϕ) would combine with the Chern-Simons gauge field \mathcal{A} to give us the A that appears in S_{b} as

In fact without doing the computations, we would have never been able to see that the twisted scalar fields (which we now call ϕ) would combine with the Chern-Simons gauge field \mathcal{A} to give us the A that appears in S_{b} as

$$
A=\mathcal{A}+t \phi
$$

In fact without doing the computations, we would have never been able to see that the twisted scalar fields (which we now call ϕ) would combine with the Chern-Simons gauge field \mathcal{A} to give us the A that appears in S_{b} as

$$
A=\mathcal{A}+t \phi
$$

where t is a parameter that distinguishes various topological field theories, i.e for every choice of t there exists a topological field theory.

In fact without doing the computations, we would have never been able to see that the twisted scalar fields (which we now call ϕ) would combine with the Chern-Simons gauge field \mathcal{A} to give us the A that appears in S_{b} as

$$
A=\mathcal{A}+t \phi
$$

where t is a parameter that distinguishes various topological field theories, i.e for every choice of t there exists a topological field theory.

Note that under twisting, the $\mathcal{N}=4$ scalar fields action gets a contribution from the intersection region in such a way so as to tag along with the gauge field \mathcal{A} to give us precisely a Chern-Simons action S_{b} !

In fact without doing the computations, we would have never been able to see that the twisted scalar fields (which we now call ϕ) would combine with the Chern-Simons gauge field \mathcal{A} to give us the A that appears in S_{b} as

$$
A=\mathcal{A}+t \phi
$$

where t is a parameter that distinguishes various topological field theories, i.e for every choice of t there exists a topological field theory.

Note that under twisting, the $\mathcal{N}=4$ scalar fields action gets a contribution from the intersection region in such a way so as to tag along with the gauge field \mathcal{A} to give us precisely a Chern-Simons action S_{b} ! And that's the miracle!

The contribution from the intersection region of the NS5-D3 system that Witten found is rather subtle

The contribution from the intersection region of the NS5-D3 system that Witten found is rather subtle and, although this entails most of the key discussions of topological field theory in this set-up, is rather hard to visualize.

The contribution from the intersection region of the NS5-D3 system that Witten found is rather subtle and, although this entails most of the key discussions of topological field theory in this set-up, is rather hard to visualize. Is there a simpler way to see this contribution and derive the boundary theory?

The contribution from the intersection region of the NS5-D3 system that Witten found is rather subtle and, although this entails most of the key discussions of topological field theory in this set-up, is rather hard to visualize. Is there a simpler way to see this contribution and derive the boundary theory?

The answer turns out to be yes, by dualizing the Witten's set-up to M-theory.

The contribution from the intersection region of the NS5-D3 system that Witten found is rather subtle and, although this entails most of the key discussions of topological field theory in this set-up, is rather hard to visualize. Is there a simpler way to see this contribution and derive the boundary theory?

The answer turns out to be yes, by dualizing the Witten's set-up to M-theory. Once we insert another parallel NS5-brane at the other end of the D3-branes and dualize this to M-theory, the branes disappear and are converted to geometry in M-theory!

The θ angle dualize to G-fluxes in M-theory, so together we have only geometry and fluxes in M-theory.

The θ angle dualize to G-fluxes in M-theory, so together we have only geometry and fluxes in M-theory. The precise M-theory configuration turns out to be a non-compact seven-manifold that is a N-centered warped Taub-NUT space $T N_{N}$, fibered over a compact three-dimensional base Σ_{3}.

The θ angle dualize to G-fluxes in M-theory, so together we have only geometry and fluxes in M-theory. The precise M-theory configuration turns out to be a non-compact seven-manifold that is a N-centered warped Taub-NUT space $T N_{N}$, fibered over a compact three-dimensional base Σ_{3}.

$$
\mathcal{M}_{7}=T N_{N} \times \Sigma_{3}
$$

The θ angle dualize to G-fluxes in M-theory, so together we have only geometry and fluxes in M-theory. The precise M-theory configuration turns out to be a non-compact seven-manifold that is a N-centered warped Taub-NUT space $T N_{N}$, fibered over a compact three-dimensional base Σ_{3}.

$$
\mathcal{M}_{7}=T N_{N} \times \Sigma_{3}
$$

The geometry in M-theory is parametrized by certain warp factors $\left(F_{1}(r), \widetilde{F}_{2}(r), F_{3}(r), F_{4}(r, .).\right)$ and the θ-term by θ.

The θ angle dualize to G-fluxes in M-theory, so together we have only geometry and fluxes in M-theory. The precise M-theory configuration turns out to be a non-compact seven-manifold that is a N-centered warped Taub-NUT space $T N_{N}$, fibered over a compact three-dimensional base Σ_{3}.

$$
\mathcal{M}_{7}=T N_{N} \times \Sigma_{3}
$$

The geometry in M-theory is parametrized by certain warp factors ($F_{1}(r), \widetilde{F}_{2}(r), F_{3}(r), F_{4}(r, .$.$)) and the \theta$-term by θ. Most of the warp-factors are functions of the radial coordinate r, while F_{4} is more generic.

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}.

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms.

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms. How does this help us?

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms. How does this help us?

It turns out that one may effectively compactify the eleven-dimensional supergravity action over these harmonic forms to get an abelian gauge theory in four-dimensions!

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms. How does this help us?

It turns out that one may effectively compactify the eleven-dimensional supergravity action over these harmonic forms to get an abelian gauge theory in four-dimensions!

How do we get the full non-abelian theory?

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms. How does this help us?

It turns out that one may effectively compactify the eleven-dimensional supergravity action over these harmonic forms to get an abelian gauge theory in four-dimensions!

How do we get the full non-abelian theory? The non-abelian enhancement occur exactly by the M2-brane states wrapped on the vanishing two-cycles of $T N_{N}$!

One might now worry that, since \mathcal{M}_{7} is non-compact, one cannot simply "compactify" M-theory on \mathcal{M}_{7}. However, our \mathcal{M}_{7} is special because it happens to have normalizable harmonic two-forms. How does this help us?

It turns out that one may effectively compactify the eleven-dimensional supergravity action over these harmonic forms to get an abelian gauge theory in four-dimensions!

How do we get the full non-abelian theory? The non-abelian enhancement occur exactly by the M2-brane states wrapped on the vanishing two-cycles of $T N_{N}$!

The story is very detailed, but thankfully straightforward.

After the dust settles, the four-dimensional Hamiltonian is easy to write down. This is given by

After the dust settles, the four-dimensional Hamiltonian is easy to write down. This is given by

which, as described in [11], can be made by picking the three scalar fields in \vec{X} and one scalar field from \vec{Y} (which we take here as φ_{3}). This means the complex σ field of [11], for our case will become:

$$
\begin{equation*}
\sigma \equiv \mathcal{A}_{r}+i \mathcal{A}_{\phi 1} . \tag{3.157}
\end{equation*}
$$

The Gauss law constraint and the identification of the scalar fields will lead us to compute the Hamiltonian from the total effective action (3.153). Isolating the same scalar \mathcal{A}_{3}, the expression for the Hamiltonian, for the case when $c_{2}=0$ in (3.153), can be expressed as sum of squares of various terms in the following way:

$$
\begin{align*}
& \mathcal{H}=\int d^{3} x \operatorname{Tr}\left\{\sum_{\alpha=1}^{2} \frac{c_{1}}{v_{3}}\left(\sqrt{c_{11}} \mathcal{F}_{\alpha 0}-\sqrt{c_{\mathrm{o} 3}} \mathcal{D}_{\alpha} \mathcal{A}_{3}\right)^{2}+\frac{c_{1}}{v_{3}}\left(\sqrt{c_{12}} \mathcal{F}_{\psi 0}-\sqrt{c_{\psi 3}} \mathcal{D}_{\psi} \mathcal{A}_{3}\right)^{2}\right. \\
& +\frac{c_{1}}{v_{3}}\left(\sqrt{c_{0 r}} \mathcal{D}_{0} \mathcal{A}_{r}-i \sqrt{a_{2}}\left[\mathcal{A}_{3}, \mathcal{A}_{r}\right]\right)^{2}+\frac{c_{1}}{v_{3}}\left(\sqrt{c_{0 \phi_{1}}} \mathcal{D}_{0} \mathcal{A}_{\phi_{1}}-i \sqrt{a_{4}}\left[\mathcal{A}_{3}, \mathcal{A}_{\phi_{1}}\right]\right)^{2} \\
& +\frac{c_{1}}{v_{3}}\left(s^{(1)} c_{\psi r}\left(\mathcal{D}_{\psi} \mathcal{A}_{r}\right)^{2}+s^{(2)} c_{\psi \phi_{1}}\left(\mathcal{D}_{\psi} \mathcal{A}_{\phi_{1}}\right)^{2}+t^{(1)} c_{\beta r}\left(\mathcal{D}_{\beta} \mathcal{A}_{r}\right)^{2}+t^{(2)} c_{\beta \phi_{1}}\left(\mathcal{D}_{\beta} \mathcal{A}_{\phi_{1}}\right)^{2}\right) \\
& +\sum_{k=1}^{3}\left(\sqrt{b_{0 k}} \mathcal{D}_{0} \varphi_{k}-i \sqrt{c_{3 k}}\left[\mathcal{A}_{3}, \varphi_{k}\right]\right)^{2}+\frac{c_{1} c_{03}}{v_{3}}\left(\mathcal{D}_{0} \mathcal{A}_{3}\right)^{2}+\sum_{\alpha, \beta=1}^{2}\left(\sqrt{\frac{c_{1} c_{11}}{2 v_{3}}} \mathcal{F}_{\alpha \beta}\right. \\
& +\sqrt{\frac{c_{1} c_{\psi r}}{v_{3}}} s_{\alpha \beta}^{(1)} \epsilon_{\alpha \beta \psi r} \mathcal{D}_{\psi} \mathcal{A}_{r}+\sqrt{\frac{c_{1} C_{\psi \phi \phi_{1}}}{v_{3}}} s_{\alpha \beta}^{(2)} \epsilon_{\alpha \beta \psi \phi_{1}} \mathcal{D}_{\psi} \mathcal{A}_{\phi_{1}}+\sum_{\delta=1}^{3} \sum_{k=1}^{3} \sqrt{b_{\delta k}} \epsilon_{\alpha \beta} \cdot m_{\delta k}^{(1)} \mathcal{D}_{\delta} \varphi_{k} \\
& -\sum_{k, l} i g_{\alpha \beta k l}^{(1)} \sqrt{d_{k l}}\left[\varphi_{k}, \varphi_{l}\right]-\sum_{k=1}^{3} i\left(g_{\alpha \beta k}^{(2)} \sqrt{c_{r k}}\left[\mathcal{A}_{r}, \varphi_{k}\right]+g_{\alpha \beta k}^{(3)} \sqrt{c_{\phi_{1} k}}\left[\mathcal{A}_{\phi_{1}}, \varphi_{k}\right]\right) \\
& \left.-i g_{\alpha \beta}^{(4)} \sqrt{\frac{c_{1} a_{1}}{v_{3}}}\left[\mathcal{A}_{r}, \mathcal{A}_{\phi_{1}}\right]\right)^{2}+\frac{\left(\mathbf{Q}_{\mathrm{E}}+\mathbf{Q}_{\mathrm{M}}\right) \delta^{3} x}{\operatorname{dim} G}+\sum_{\alpha=1}^{2}\left(\sqrt{\frac{c_{1} c_{12}}{2 v_{3}}} \mathcal{F}_{\alpha \psi}+\sqrt{\frac{c_{1} c_{\beta r}}{v_{3}}} t_{\alpha}^{(1)} \epsilon_{\alpha \psi \beta r} \mathcal{D}_{\beta \beta} \mathcal{A}_{r}\right. \\
& +\sqrt{\frac{c_{1} c_{\beta \phi 1}}{v_{3}}} t_{\alpha}^{(2)} \epsilon_{\alpha \psi \beta \phi_{1}} \mathcal{D}_{\beta} \mathcal{A}_{\phi_{1}}+\sum_{\delta=1}^{3} \sum_{k=1}^{3} \sqrt{b_{\delta k}} \epsilon_{\alpha \psi} \cdot m_{\delta k}^{(2)} \mathcal{D}_{\delta} \varphi_{k}-\sum_{k, l} i h_{\alpha \psi k l}^{(1)} \sqrt{d_{k l}}\left[\varphi_{k}, \varphi_{l}\right] \\
& \left.-\sum_{k=1}^{3} i\left(h_{\alpha \psi k}^{(2)} \sqrt{c_{r k}}\left[\mathcal{A}_{r}, \varphi_{k}\right]+h_{\alpha \psi k}^{(3)} \sqrt{c_{\phi_{1} k}}\left[\mathcal{A}_{\phi_{1}, \varphi_{k}}\right]\right)-i h_{\alpha \psi}^{(4)} \sqrt{\frac{c_{1} a_{1}}{v_{3}}}\left[\mathcal{A}_{r}, \mathcal{A}_{\phi_{1}}\right]\right)^{2} \\
& \left.+\sum_{k, l} q_{k l}^{(1)} d_{k l}\left[\varphi_{k}, \varphi_{l}\right]^{2}+\sum_{k=1}^{3} \sum_{\gamma=2}^{3} q_{k}^{(\gamma)} c_{y_{\gamma} k}\left[\mathcal{A}_{y_{\gamma},}, \varphi_{k}\right]^{2}+\frac{q^{(4)} c_{1} a_{1}}{v_{3}}\left[\mathcal{A}_{r}, \mathcal{A}_{\phi_{1}}\right]^{2}\right\}, \tag{3.158}
\end{align*}
$$

where Q_{E} and Q_{M} are the electric and the magnetic charges respectively, which will be determined later; $\operatorname{dim} G$ is the dimension of the group; and $\delta \equiv(\alpha, \psi)$,
$\left(y_{2}, y_{3}\right) \equiv\left(r, \phi_{1}\right)$. Most of coefficients appearing in (3.158) have been determined

The Hamiltonian, despite its little formidable appearance, is actually simple.

The Hamiltonian, despite its little formidable appearance, is actually simple. It is written as

The Hamiltonian, despite its little formidable appearance, is actually simple. It is written as

$$
\mathcal{H}=\text { Sum of squares }+\mathbf{Q}_{\mathbf{E}}+\mathbf{Q}_{\mathbf{M}}
$$

The Hamiltonian, despite its little formidable appearance, is actually simple. It is written as

$$
\mathcal{H}=\text { Sum of squares }+\mathbf{Q}_{\mathbf{E}}+\mathbf{Q}_{\mathbf{M}}
$$

Minimizing the Hamiltonian would mean putting the sum of square pieces to zero.

The Hamiltonian, despite its little formidable appearance, is actually simple. It is written as

$$
\mathcal{H}=\text { Sum of squares }+\mathbf{Q}_{\mathbf{E}}+\mathbf{Q}_{\mathbf{M}}
$$

Minimizing the Hamiltonian would mean putting the sum of square pieces to zero. A part of these give us

The Hamiltonian, despite its little formidable appearance, is actually simple. It is written as

$$
\mathcal{H}=\text { Sum of squares }+\mathbf{Q}_{\mathbf{E}}+\mathbf{Q}_{\mathbf{M}}
$$

Minimizing the Hamiltonian would mean putting the sum of square pieces to zero. A part of these give us

$$
\begin{aligned}
& \mathcal{D}_{0} \mathcal{A}_{3}=0, \quad\left(\sqrt{b_{0 k}}-\sqrt{c_{3 k}}\right)^{2}\left[\mathcal{A}_{3}, \varphi_{k}\right]^{2}=0 \\
& \left(\sqrt{c_{11}}-\sqrt{c_{\alpha 3}}\right)^{2}\left(\mathcal{D}_{\alpha} \mathcal{A}_{3}\right)^{2}=0, \quad\left(\sqrt{c_{12}}-\sqrt{c_{\psi 3}}\right)^{2}\left(\mathcal{D}_{\psi} \mathcal{A}_{3}\right)^{2}=0 \\
& \left(\sqrt{c_{0 r}}-\sqrt{a_{2}}\right)^{2}\left[\mathcal{A}_{3}, \mathcal{A}_{r}\right]^{2}=0, \quad\left(\sqrt{c_{0 \phi_{1}}}-\sqrt{a_{4}}\right)^{2}\left[\mathcal{A}_{3}, \mathcal{A}_{\phi_{1}}\right]^{2}=0
\end{aligned}
$$

Since \mathcal{A}_{3} and φ_{k} are non-zero, these equations can only be satisfied if there exist some equality between the coefficients.

Since \mathcal{A}_{3} and φ_{k} are non-zero, these equations can only be satisfied if there exist some equality between the coefficients. Lets do some checks.

Since \mathcal{A}_{3} and φ_{k} are non-zero, these equations can only be satisfied if there exist some equality between the coefficients. Lets do some checks.

$$
\begin{aligned}
& c_{11}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right| \\
& c_{\alpha 3}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right| .
\end{aligned}
$$

Since \mathcal{A}_{3} and φ_{k} are non-zero, these equations can only be satisfied if there exist some equality between the coefficients. Lets do some checks.

$$
\begin{aligned}
& c_{11}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right| \\
& c_{\alpha 3}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right| .
\end{aligned}
$$

They are equal if and only if $H_{2}=1$

Since \mathcal{A}_{3} and φ_{k} are non-zero, these equations can only be satisfied if there exist some equality between the coefficients. Lets do some checks.

$$
\begin{aligned}
& c_{11}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right| \\
& c_{\alpha 3}(\theta)=R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}} \sqrt{\frac{F_{1} \widetilde{F}_{2} F_{3}}{\widetilde{F}_{2}-F_{3}}} \ln \left|\frac{\sqrt{\widetilde{F}_{2}}+\sqrt{\widetilde{F}_{2}-F_{3}}}{\sqrt{\widetilde{F}_{2}}-\sqrt{\widetilde{F}_{2}-F_{3}}}\right|
\end{aligned}
$$

They are equal if and only if $H_{2}=1$, where $H_{2} \equiv H_{2}\left(\widetilde{F}_{1}, F_{2}, F_{3}, F_{4}\right)$ is another warp factor.

Lets make one more check, this time using other coefficients that appeared in the minimizing equations.

Lets make one more check, this time using other coefficients that appeared in the minimizing equations.

$$
\begin{aligned}
& b_{0 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{F_{1} \widetilde{F}_{2}} \Theta_{12} \\
& c_{3 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{\widetilde{F}_{2} F_{1}} \Theta_{12}
\end{aligned}
$$

Lets make one more check, this time using other coefficients that appeared in the minimizing equations.

$$
\begin{aligned}
& b_{0 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{F_{1} \widetilde{F}_{2}} \Theta_{12} \\
& c_{3 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{\widetilde{F}_{2} F_{1}} \Theta_{12}
\end{aligned}
$$

One can easily check that they are identical if and only of $H_{2}=1$.

Lets make one more check, this time using other coefficients that appeared in the minimizing equations.

$$
\begin{aligned}
& b_{0 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{F_{1} \widetilde{F}_{2}} \Theta_{12} \\
& c_{3 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{\widetilde{F}_{2} F_{1}} \Theta_{12}
\end{aligned}
$$

One can easily check that they are identical if and only of $H_{2}=1$. In fact one may check all the minimizing equations and find similar conclusion!

Lets make one more check, this time using other coefficients that appeared in the minimizing equations.

$$
\begin{aligned}
& b_{0 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r e^{2 \phi_{0}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{F_{1} \widetilde{F}_{2}} \Theta_{12} \\
& c_{3 k}(\theta)=2 R_{3} \sec \theta \int_{0}^{\infty} d r \frac{e^{2 \phi_{0}}}{H_{2}}\left(\frac{F_{3}}{H_{2}}\right)^{1 / 3} \sqrt{\widetilde{F}_{2} F_{1}} \Theta_{12}
\end{aligned}
$$

One can easily check that they are identical if and only of $H_{2}=1$. In fact one may check all the minimizing equations and find similar conclusion! Thus these equations are exactly solved with $H_{2}=1$!

But there are more to it. Looking back at the Hamiltonian again we get another class of solutions that look like

But there are more to it. Looking back at the Hamiltonian again we get another class of solutions that look like

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

But there are more to it. Looking back at the Hamiltonian again we get another class of solutions that look like

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

Which are exactly the BHN equations!

But there are more to it. Looking back at the Hamiltonian again we get another class of solutions that look like

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

Which are exactly the BHN equations! This way we recover many of the results of Kapustin and Witten using simple Hamiltonian formalism.

But there are more to it. Looking back at the Hamiltonian again we get another class of solutions that look like

$$
\mathcal{F}_{a b}+\epsilon_{a b c d} D_{c} \varphi_{d}+2\left[\varphi_{a}, \varphi_{b}\right]=0
$$

Which are exactly the BHN equations! This way we recover many of the results of Kapustin and Witten using simple Hamiltonian formalism.

However the challenge is to get the boundary topological theory after twisting. Can we get this right?

This time the miracle happens from the electric and the magnetic charges Q_{E} and Q_{M} respectively.

This time the miracle happens from the electric and the magnetic charges Q_{E} and Q_{M} respectively. After twisting the electric and the magnetic charges combine with the θ term of the four-dimensional action to give us

This time the miracle happens from the electric and the magnetic charges Q_{E} and Q_{M} respectively. After twisting the electric and the magnetic charges combine with the θ term of the four-dimensional action to give us

$$
\begin{aligned}
S_{\text {bnd }} & =k \int_{\mathrm{w}} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2 i}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \\
& +\int_{\mathrm{W}} \operatorname{Tr}\left\{2 d_{1} \mathcal{F} \wedge \phi+\frac{2 i}{3}\left(\frac{d_{1}^{3}}{k^{2}}\right) \phi \wedge \phi \wedge \phi+\left(\frac{d_{1}^{2}}{k}\right) \phi \wedge d_{\mathcal{A}} \phi\right\}
\end{aligned}
$$

This time the miracle happens from the electric and the magnetic charges Q_{E} and Q_{M} respectively. After twisting the electric and the magnetic charges combine with the θ term of the four-dimensional action to give us

$$
\begin{aligned}
S_{\text {bnd }} & =k \int_{\mathbf{W}} \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2 i}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \\
& +\int_{\mathbf{W}} \operatorname{Tr}\left\{2 d_{1} \mathcal{F} \wedge \phi+\frac{2 i}{3}\left(\frac{d_{1}^{3}}{k^{2}}\right) \phi \wedge \phi \wedge \phi+\left(\frac{d_{1}^{2}}{k}\right) \phi \wedge d_{\mathcal{A}} \phi\right\} \\
& =k \int_{\mathbf{W}} \operatorname{Tr}\left\{\left[\mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi\right] \wedge d\left[\mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi\right]\right. \\
& \left.+\frac{2 i}{3}\left[\mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi\right] \wedge\left[\mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi\right] \wedge\left[\mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi\right]\right\}
\end{aligned}
$$

This is in fact exactly the topological theory that we have been looking for and now, from M-theory, takes the following form

This is in fact exactly the topological theory that we have been looking for and now, from M-theory, takes the following form

$$
S_{b n d}=k \int_{\mathrm{W}} \operatorname{Tr}\left(\mathcal{A}_{d} \wedge d \mathcal{A}_{d}+\frac{2 i}{3} \mathcal{A}_{d} \wedge \mathcal{A}_{d} \wedge \mathcal{A}_{d}\right)
$$

This is in fact exactly the topological theory that we have been looking for and now, from M-theory, takes the following form

$$
S_{\text {bnd }}=k \int_{\mathrm{W}} \operatorname{Tr}\left(\mathcal{A}_{d} \wedge d \mathcal{A}_{d}+\frac{2 i}{3} \mathcal{A}_{d} \wedge \mathcal{A}_{d} \wedge \mathcal{A}_{d}\right)
$$

with \mathcal{A}_{d} is exactly the modified gauge field that we had in the Kapustin-Witten set-up, namely

This is in fact exactly the topological theory that we have been looking for and now, from M-theory, takes the following form

$$
S_{\text {bnd }}=k \int_{\mathrm{W}} \operatorname{Tr}\left(\mathcal{A}_{d} \wedge d \mathcal{A}_{d}+\frac{2 i}{3} \mathcal{A}_{d} \wedge \mathcal{A}_{d} \wedge \mathcal{A}_{d}\right)
$$

with \mathcal{A}_{d} is exactly the modified gauge field that we had in the Kapustin-Witten set-up, namely

$$
\mathcal{A}_{d} \equiv \mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi
$$

This is in fact exactly the topological theory that we have been looking for and now, from M-theory, takes the following form

$$
S_{b n d}=k \int_{\mathrm{W}} \operatorname{Tr}\left(\mathcal{A}_{d} \wedge d \mathcal{A}_{d}+\frac{2 i}{3} \mathcal{A}_{d} \wedge \mathcal{A}_{d} \wedge \mathcal{A}_{d}\right)
$$

with \mathcal{A}_{d} is exactly the modified gauge field that we had in the Kapustin-Witten set-up, namely

$$
\mathcal{A}_{d} \equiv \mathcal{A}+\left(\frac{d_{1}}{k}\right) \phi
$$

where k and d_{1} are determined from the warp-factors F_{i} appearing in our M-theory set-up discussed earlier.

However many things, for example how to compute the knot invariants, connection to Ooguri-Vafa set-up etc., still remain to be discussed, but that is for another talk.

However many things, for example how to compute the knot invariants, connection to Ooguri-Vafa set-up etc., still remain to be discussed, but that is for another talk. For more details on these and other topics you may look up our paper on the subject.

Conclusion and discussion

Conclusion and discussion

It all started way back in 1989 with the intriguing work of Witten on connecting the Jones polynomials with Chern-Simons theory

Conclusion and discussion

It all started way back in 1989 with the intriguing work of Witten on connecting the Jones polynomials with Chern-Simons theory

Conclusion and discussion

It all started way back in 1989 with the intriguing work of Witten on connecting the Jones polynomials with Chern-Simons theory

which has lead us to make further connections to the geometric Langland programme, Khovanov-Rozanski homology, opers and conformal blocks (that we did not discuss here).

Our attempt here was to show that M-theory entails many of the interesting physics that appear in these elaborate mathematical set-ups.

Our attempt here was to show that M-theory entails many of the interesting physics that appear in these elaborate mathematical set-ups. A full elaboration of the M-theory framework might reveal even deeper connections between the various branches of mathematics.

Our attempt here was to show that M-theory entails many of the interesting physics that appear in these elaborate mathematical set-ups. A full elaboration of the M-theory framework might reveal even deeper connections between the various branches of mathematics. Thus everything should be connected by a knot!

Our attempt here was to show that M-theory entails many of the interesting physics that appear in these elaborate mathematical set-ups. A full elaboration of the M-theory framework might reveal even deeper connections between the various branches of mathematics. Thus everything should be connected by a knot!

Hopefully it was not so confusing or boring! Thanks for listening.

Our attempt here was to show that M-theory entails many of the interesting physics that appear in these elaborate mathematical set-ups. A full elaboration of the M-theory framework might reveal even deeper connections between the various branches of mathematics. Thus everything should be connected by a knot!

Hopefully it was not so confusing or boring! Thanks for listening.

