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• The Schwarzschild solution of the vacuum 
Einstein equations contains one parameter, 
the mass.  

• The mass can be any value, positive or 
negative. 

Gµ⌫ [g�⇢(t, r, ✓,';M)] = 0

d⌧2 = (1� 2M/r)dt2 � dr2/(1� 2M/r)� r2d⌦2



• The metric is singular at                  
• For positive mass there is a singularity at                   

however this can be removed with an 
appropriate change of coordinates.                  
defines the event horizon, and we are content 
to observe that the real singularity at the 
origin is hidden behind this horizon.   

• As the role of the time and radial coordinates 
exchange at the event horizon, the 
singularity at the origin occurs on a future 
space-like hypersurface which is impossible 
to avoid, a circumstance that does not seem 
particularly pleasant  

r = 0

r = 2M

r = 2M



• For negative mass, there is no event horizon and the 
singularity at the origin is naked, it occurs at a 
distinct spatial position. 

• But we deal with this kind of singularity all the 
time, and compared to the murderous, inevitable 
future singularity of positive mass, they are benign.   

• For example, from far away, a proton say, appears 
as a singular point charge, however, on closer 
inspection, we find that the charge is spread out 
over a tiny volume. 

• Can we not imagine the introduction of a smooth 
distribution of negative matter to give the same 
kind of resolution for a negative mass gravitational 
singularity?



•Negative mass particles, if they exists are 
strange beasts. 
• A negative mass particle creates a negative 

gravitational field, however, because of the 
equivalence principle, it is attracted to 
positive mass particles. 

•  The force is exerted on a negative mass 
particle        by a positive mass particle     , 
towards the positive mass particle is: 

• But the acceleration felt by the negative 
mass particle is:

1 Negative mass particles

It has been the common understanding that negative mass Schwarzschild so-
lutions, in general relativity, have no physical meaning. On the other hand,
it has also been realized that classical solutions, no matter how crazy, seem
to have some meaning in the full quantum theory. Take for example the
case of instantons, classical solutions in imaginary time. On the face of it,
these have no physical relevance, however, they turn out to give us a pow-
erful method to compute tunnelling amplitudes. No initial configuration of
matter, that satisfies the dominant energy condition, will collapse through
classical time evolution to a negative mass configuration. Matter will only
collapse to positive mass black hole configurations. But perhaps the exis-
tence of the negative mass solutions is simply a sign that the classical theory
is incomplete. These solutions are only singular at one point and the sin-
gularity is naked, but away from the singularity they are very well behaved.
Perhaps their defective nature is only a problem due to our incomplete un-
derstanding of gravity. It is believed that the full, quantum theory of gravity
will have no unphysical configurations, and quite possibly the negative mass
Schwarzschild solutions may have a non-trivial role in this theory, with the
problem of the naked singularity resolved by ultra-violet completeness. It
would be important to find the physical meaning of the negative mass so-
lutions. In this essay we find that negative mass solutions in a de Sitter
geometry are perfectly physical.

But if they exist, particles of negative mass are strange beasts. Because of
the equivalence principle, they are actually attracted by particles of positive
mass. Indeed, using Newton’s law for the universal gravitational force on a
particle of mass �m by a particle of positive mass M we get

F =
GM(�m)

r2
. (1)

However the momentum of the negative mass particle is p = (�m)v thus
Newton’s second law gives us

ṗ = (�m)a = F =
GM(�m)

r2
. (2)

Evidently the mass of the accelerated particle, �m, cancels from both sides,
giving a = GM

r2 , the universal gravitational acceleration, which is of course
independent of the (negative) mass and hence consistent with the equivalence
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ṗ = (�m)a� = F = GM(�m)
r2



• Obviously the negative mass cancels from both 
sides of the equation giving: 

• On the other hand, the acceleration felt by the 
positive mass particle is obtained through: 

• That is: 

• which is clearly negative or repulsive.

ṗ = (M)a+ = F+ = G(�m)M
r2

a+ = G(�m)
r2

a� = GM
r2



• This scenario was first expressed by Luttinger 
in 1951 GRFEC, “On Negative Mass in the 
Theory of Gravitation”. 

• Subsequently, Bondi made a detailed analysis 
in the context of general relativity, 

• He considered the situation only from the 
point of view of the exterior spacetime, the 
negative mass was considered to be inside a 
compact region that was not probed.  
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extension, or whether the free parts of those fields
which play such a role need, in addition, to be nonlinear
in some specific way, or whether only general rela-
tivistic coupling will work. Equation (1) would still
hold for such extended theories, being a purely kine-
matical property of homogeneous space-time, but the
usual local commutativity properties would be lost;
that is, the commutator of a field component with its
time-derivative would, even at equal times, depend on
other fields. Alternately, the conjugate momentum
would be a function of such other fields as well as of
the time derivative of the corresponding component.
The assumption that this is not the case appears to be
implicitly required in the proofs of the pessimistic
theorems. The commutation relations are closely
related to the creation and annihilation of particles;
if they now depend on the other fields present, it might
happen that the contributions, as the thresholds of
higher and higher creation processes are passed with
increasing energies, are damped thereby. These contri-
butions from new creation processes seem to be the

cause (or another expression) of the divergences in
field theory, in which cases the new couplings might
yield convergence. Such couplings arise, for example,
in quantum hydrodynamics. " Saturation might be
expected to occur with some of these couplings; that is,
the presence of many quanta, or high energies, may
damp further creation. "
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"A. Thellung, Helv. Phys. Acta 29, 103 (1956).In this case the

kinetic energy has the form pv'/2, both p and v being 6elds. This
form may be very different, however, from one in which several
variables p;; multiply v;v;,
"Landau" has also remarked that at high energies 6eld theory

might go over into a quantum hydrodynamical scheme.
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AITHOUGH some of the arguments relating to
negative mass are fairly elementary and well

known, it will nevertheless be of advantage to rediscuss
the meaning of this term. In the first instance, without
fully specifying a theory, we can distinguish between
three kinds of mass according to the measurement by
which it is defined: inertial, passive gravitational, and
active gravitational mass. Inertial mass is the quantity
that enters (and is defined by) Newton's second law*;
passive gravitational mass is the mass on which the
gravitational fields acts, that is it is defined by I'= —m
grad V; active gravitational mass is the mass that
is the source of gravitational fields and is hence the
mass that enters Poisson's equation and Gauss' law.
In Newtonian physics the law of action and reaction

implies the equality of active and passive gravitational
masses, but the equality of inertial mass with these
other two is a separate empirical fact. The sign of both
these masses can take either value and it is an additional
empirical result that it is always positive. Four cases
accordingly arise, if this empirical fact is left out of
account.
*A mass-independent force (say, of electromagnetic nature)

has to be used here, for obvious reasons.

(i) All mass is positive; this is familiar.
(ii) Inertial mass negative, gravitational mass is

positive. A body consisting of matter of this k,ind will
respond perversely to all forces whether gravitational
or of other kinds, but will produce gravitational forces
just as a usual body does.
(iii) Inertial mass positive, gravitational masses

negative. In this case we would have normal behavior
relating to all nongravitational forces, but gravitational
behavior involving masses of this type and of type (i)
would be governed by a negative Coulomb law; i.e.,
like masses would attract and unlike masses would
repel.
(iv) All mass is negative. This would be a combina-

tion of (ii) and (iii). Matter of this kind responds
perversely to nongravitational forces, responds like
ordinary matter to gravitational forces, but produces
repulsive gravitational fields.
In general relativity the situation is quite di6erent.

The principle of equivalence is not a separate fact but
is basic to the theory. Accordingly the ratio of inertial
and passive gravitational masses is the same for all
bodies. The relation between active and passive
gravitational masses is not fixed by anything like
Newton's third law as this would require integrals over



• Bondi’s analysis is still not complete, as it 
does not address what is the source of the 
negative mass 

• Indeed, in asymptotically Minkowski 
spacetime, there cannot exist negative mass 
that comes from physically reasonable 
sources, due to the positive energy theorem. 

• Physically reasonable mass would satisfy the 
dominant energy condition. 

• for any timeline vector 

The RHS of Eqn. (7) can be interpreted as the energy-momentum tensor of
a “dark-energy” type of matter Tµ⌫ = (⇤/8⇡G)gµ⌫ . It respects the dominant
energy condition everywhere, apart from the position of the singularity where
no conclusion should be made. We will show that the metric can be deformed
to a completely non-singular metric that everywhere respects the dominant
energy condition.

Pure de Sitter space-time corresponds to an exact solution of the Einstein
equations in the presence a constant, dark-energy type of energy-momentum.
We can imagine creating a compact region of space where the energy-momentum
density is higher than this background at the expense of adding in some
energy-momentum density. The corresponding exact solution, outside the
compact region, would be the positive mass Schwarzschild de Sitter met-
ric. Conversely, we can imagine creating a compact region of space where
the energy-momentum tensor is lower than the background at the expense
of subtracting o↵ some energy density. The corresponding exact solution,
outside the compact region, would be the negative mass Schwarzschild de
Sitter metric. As the regions of space over which the super density or the
sub density is created would be of finite volume, the resultant total metric
would be everywhere non-singular. As the regions over which the density
is to be perturbed are small, and the perturbations are also small, it is not
surprising that it is possible to maintain the dominant energy valid satisfied
at all points.

2 Dominant energy condition

We will consider a spherically symmetric, static space-time in Schwarzschild
coordinates, for which the metric looks like

d⌧ 2 =

✓
1� 2

M(r)

r

◆
dt2 � 1

1� 2M(r)
r

dr2 � r2d✓2 � r2 sin2(✓)d�2 (8)

where M(r) is the e↵ective mass of the space-time. These coordinates are
valid for 1� 2M(r)

r > 0. The energy-momentum tensor giving this particular
metric is given by

T 0
0 = T 1

1 =
2M 0(r)

r2
, T 2

2 = T 3
3 =

M 00(r)

r
(9)

where 8⇡G and the speed of light in vacuum set equal to 1. The dominant
energy conditions states that for all timelike or lightlike vector u, T 0⌫u⌫ � 0
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and T µ⌫u⌫Tµ↵u↵ � 0. Choosing a Lorentz frame, a general timelike vector
take the form uµ = 1

(1�a2�b2�c2)1/2
(1, a, b, c) with 1 � a2 � b2 � c2 > 0. With

our expression for Tµ⌫ , the first inequality becomes

T 0⌫u⌫ =
2M 0(r)

r2
p
1� a2 � b2 � c2

� 0 (10)

which is equivalent to
M 0(r) � 0. (11)

The second inequality of the dominant energy condition takes the form

T µ⌫u⌫Tµ↵u
↵ =

✓
4M 0(r)2

r4
� (b2 + c2) (r2M 00(r)2 � 4M 0(r)2)

(1� a2 � b2 � c2) r4

◆
� 0 (12)

Since 1� a2 � b2 � c2 can be as small as we want, this is true for all timelike
vector if and only if

(rM 00(r)� 2M 0(r)) (rM 00(r) + 2M 0(r))  0 (13)

Using (11), this is equivalent to

d

dr

✓
M 0(r)

r2

◆
 0 (14)

d

dr

�
M 0(r)r2

�
� 0 (15)

Considering lightlike vectors does not yield any new results and we can see
that (14) and (15) together implies (11). The dominant energy condition is
thus equivalent to these two inequalities.

3 Particular class of solution

We consider particular solutions described by

M(r) = m+
�r3

6
� q

2r
(16)

if r < R1. Granted this function is singular at r = 0, but it can be easily
smoothed out by replacing q ! q(r) near r = 0. If r > R2 > R1, then it is
described by

M(r) = M +
⇤r3

6
(17)
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Dominant Energy Condition 
• The dominant energy condition is a very 

reasonable, local constraint to impose on any 
physical energy-momentum distribution. 

• It enforces that no observer will see energy-
momentum is moving faster than the speed 
of light. 

• Consider a spherically symmetric 
distribution of matter and the ensuing metric 
in Schwarzschild coordinates

d⌧2 = (1� 2M(r)/r)dt2 � dr2/(1� 2M(r)/r)� r2d⌦2



• Here,         is the mass inside a sphere of 
coordinate radius       . 

• Inserting this metric into the Einstein tensor 
gives the energy-momentum tensor that 
would create such a metric.  It is easily found 
that: 

• The dominant energy condition imposes: 

• For any time-like or light-like vector
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and T µ⌫u⌫Tµ↵u↵ � 0. Choosing a Lorentz frame, a general timelike vector
take the form uµ = 1
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our expression for Tµ⌫ , the first inequality becomes

T 0⌫u⌫ =
2M 0(r)

r2
p
1� a2 � b2 � c2

� 0 (10)

which is equivalent to
M 0(r) � 0. (11)

The second inequality of the dominant energy condition takes the form
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Using (11), this is equivalent to
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� 0 (15)

Considering lightlike vectors does not yield any new results and we can see
that (14) and (15) together implies (11). The dominant energy condition is
thus equivalent to these two inequalities.

3 Particular class of solution

We consider particular solutions described by

M(r) = m+
�r3

6
� q

2r
(16)

if r < R1. Granted this function is singular at r = 0, but it can be easily
smoothed out by replacing q ! q(r) near r = 0. If r > R2 > R1, then it is
described by

M(r) = M +
⇤r3

6
(17)
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Positive Energy Theorem 
by Schoen and Yau, and Witten

• The positive energy theorem states that any 
space-time that is asymptotically flat and 
contains energy-momentum that everywhere 
satisfies the dominant energy condition, will 
necessarily have  a positive ADM mass. 

• In our specialized spherically symmetric 
geometry, this requires that: 

• Thus we cannot have asymptotic flatness and  

The Einstein equations in the presence of energy-momentum are given by

Gµ⌫ [g�⇢] = 8⇡G Tµ⌫ (5)

where Gµ⌫ [g�⇢] = Rµ⌫ [g�⇢]� (1/2)R[g�⇢]gµ⌫ is the Einstein tensor, expressed
in terms of the Ricci tensor Rµ⌫ [g�⇢] and the curvature scalar R[g�⇢] all three
of which are functionals of the metric tensor gµ⌫ , while Tµ⌫ is the energy-
momentum tensor and G is the Newton constant. The basic idea of smearing
out a singular metric corresponds to replacing the singular metric gµ⌫ ! g̃µ⌫
which has no singularities, and the using the LHS of Eqn. (5) to define what
energy-momentum is required for a consistent solution. This can be easily
done for both positive and negative mass Schwarzschild solutions, the sim-
plest deformation would be to replace M(r) ! M and M � 0ensure that
M(r) ! 0 as r ! 0 su�ciently fast. Inserting the so obtained non-singular
metric into the LHS of Eqn. (5), yields the required energy-momentum dis-
tribution for a non-singular, negative mass particle. However, the situation
is not so simple.

Various positive energy theorems state that under the assumption of
asymptotic flatness and that the the dominant energy condition is satis-
fied, the mass parameter of a distribution of matter must always be posi-
tive. Therefore, as our non-singular metric is giving rise to a negative mass,
then it follows that the energy-momentum tensor, required to produce the
non-singular negative mass distribution, must violate the dominant energy
condition somewhere in the interior. Such a situation cannot be tolerated,
if a mass distribution violates the dominant energy condition, then the mat-
ter is seen to be moving outside the light-cone. The simple negative mass
Schwarzschild metric does not admit a deformation to a non-singular metric
of asymptotic negative mass.

However, the assumption of asymptotic flatness is crucial. Relaxing this
condition, the positive energy theorems no longer apply. It is then easy to
find negative mass solutions. For example, an infinite class of exact although
singular solutions exist that correspond to a negative mass black holes in a
de Sitter background. The metric is given by

d⌧ 2 =

✓
1� (⇤/3)r3 � 2GM

r

◆
dt2� dr2⇣

1� (⇤/3)r3�2GM
r

⌘�r2d✓2�r2 sin2 ✓d�2.

(6)
which is an exact solution of the Einstein’s equations in the presence of a
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• The positive energy theorem tells us that if the 
dominant energy condition were satisfied, the 
mass parameter would necessarily have to be 
positive. 

• But we can imagine eschewing the positive 
energy theorem by dropping the constraint of 
asymptotic flatness.  The inflationary phase of 
the universe or even in principle the present, 
accelerating universe are both asymptotically 
de Sitter universes which are not 
asymptotically flat.



• There is a more general exact solution of the 
Einstein equations with cosmological constant  

• containing two free parameters       and       which 
can be positive or negative.  

• We ask the question: Is there a deformation of 
the positive     but negative      metric that 
satisfies the dominant energy condition 
everywhere? 
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cosmological constant
Gµ⌫ [g�⇢] = ⇤gµ⌫ . (7)

The RHS of Eqn. (7) can be interpreted as the energy-momentum tensor of
a “dark-energy” type of matter Tµ⌫ = (⇤/8⇡G)gµ⌫ . It respects the dominant
energy condition everywhere, apart from the position of the singularity where
no conclusion should be made. We will show that the metric can be deformed
to a completely non-singular metric that everywhere respects the dominant
energy condition.

Pure de Sitter space-time corresponds to an exact solution of the Einstein
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We can imagine creating a compact region of space where the energy-momentum
density is higher than this background at the expense of adding in some
energy-momentum density. The corresponding exact solution, outside the
compact region, would be the positive mass Schwarzschild de Sitter met-
ric. Conversely, we can imagine creating a compact region of space where
the energy-momentum tensor is lower than the background at the expense
of subtracting o↵ some energy density. The corresponding exact solution,
outside the compact region, would be the negative mass Schwarzschild de
Sitter metric. As the regions of space over which the super density or the
sub density is created would be of finite volume, the resultant total metric
would be everywhere non-singular. As the regions over which the density
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The Einstein equations in the presence of energy-momentum are given by

Gµ⌫ [g�⇢] = 8⇡G Tµ⌫ (5)

where Gµ⌫ [g�⇢] = Rµ⌫ [g�⇢]� (1/2)R[g�⇢]gµ⌫ is the Einstein tensor, expressed
in terms of the Ricci tensor Rµ⌫ [g�⇢] and the curvature scalar R[g�⇢] all three
of which are functionals of the metric tensor gµ⌫ , while Tµ⌫ is the energy-
momentum tensor and G is the Newton constant. The basic idea of smearing
out a singular metric corresponds to replacing the singular metric gµ⌫ ! g̃µ⌫
which has no singularities, and the using the LHS of Eqn. (5) to define what
energy-momentum is required for a consistent solution. This can be easily
done for both positive and negative mass Schwarzschild solutions, the sim-
plest deformation would be to replace �M ! �M(r) and M � 0 ensure that
M(r) ! 0 as r ! 0 su�ciently fast. Inserting the so obtained non-singular
metric into the LHS of Eqn. (5), yields the required energy-momentum dis-
tribution for a non-singular, negative mass particle. However, the situation
is not so simple.

Various positive energy theorems state that under the assumption of
asymptotic flatness and that the the dominant energy condition is satis-
fied, the mass parameter of a distribution of matter must always be posi-
tive. Therefore, as our non-singular metric is giving rise to a negative mass,
then it follows that the energy-momentum tensor, required to produce the
non-singular negative mass distribution, must violate the dominant energy
condition somewhere in the interior. Such a situation cannot be tolerated,
if a mass distribution violates the dominant energy condition, then the mat-
ter is seen to be moving outside the light-cone. The simple negative mass
Schwarzschild metric does not admit a deformation to a non-singular metric
of asymptotic negative mass.

However, the assumption of asymptotic flatness is crucial. Relaxing this
condition, the positive energy theorems no longer apply. It is then easy to
find negative mass solutions. For example, an infinite class of exact although
singular solutions exist that correspond to a negative mass black holes in a
de Sitter background. The metric is given by

d⌧ 2 =

✓
1� (⇤/3)r3 � 2GM

r

◆
dt2� dr2⇣

1� (⇤/3)r3�2GM
r

⌘�r2d✓2�r2 sin2 ✓d�2.

(6)
which is an exact solution of the Einstein’s equations in the presence of a
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• With Jonathan Belletête we were able to find 
exactly such a deformation. 

• It is just a mathematical deformation, there is 
no analysis of stability. 

• The added energy-momentum is not seen as 
any kind of known energy-momentum
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Adding perfect fluid energy 
momentum

• The previously obtained deformation was 
simply a mathematical deformation which 
satisfied the imposed constraints. 

• We asked if there some actual physical 
energy-momentum which can provide the 
necessary deformation. 

• We were successful with the energy-
momentum of a perfect fluid.

Negative mass bubbles in de Sitter space-time  
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• The energy momentum of a perfect fluid is given 
by: 

• with metric of the form: 

• We parametrise:
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are exact solutions of the Einstein equations in the pres-
ence of a constant, background energy-momentum den-
sity (which can be alternatively interpreted as a cosmo-
logical constant), which correspond to an exponentially
evolving space-time geometry with a singular, point like
mass. The solutions contain two parameters, the value
of the mass and the value of the constant energy den-
sity (or cosmological constant). Either can be positive
or negative. Negative energy-momentum density gives
rise to anti-de Sitter space-time while positive energy-
momentum density gives rise to de Sitter space-time.
Anti-de Sitter space already on its own, does not satisfy
the dominant energy condition, thus we focus on de Sitter
space. The mass parameter describes a positive or nega-
tive point-like mass. As in the case of pure Schwarzschild
geometry, the positive mass is hidden behind an event
horizon, while the negative mass singularity is naked,
and occurs at a fixed spatial point. The positive en-
ergy theorem is not applicable since the space-time is not
asymptotically Minkowski. The negative mass singular-
ity can be smoothed out in a de Sitter background while
maintaining the dominant energy condition everywhere,
as was shown in [2]. However, in [2], no attempt was
made to find any type of energy-momentum which could
give rise to the deformation that is required, only the ex-
istence of a suitable deformation was demonstrated. In
this paper we address this question and we show that
energy-momentum corresponding to a perfect fluid can
be used to provide a suitable deformation. We find bub-
ble like configurations which are non-singular, satisfy the
dominant energy condition everywhere, and asymptoti-
cally approach the negative mass Schwarzschild-de Sitter
geometry.

Equations of motion- The metric of a spherically sym-
metric space-time can be taken as

ds2 = B(r)dt2 �A(r)dr2 � r2d✓2 � r2sin2✓d�2 (1)

where A(r) parametrized as A(r) = (1�2m(r)/r)�1 and
m(r) admits the interpretation as the effective gravita-
tional mass inside a radius r. This metric is required to
be a solution of the Einstein field equations:

Gµ⌫ = 8⇡Tµ⌫ (2)

where we take that c = G = 1. It has been commonly un-
derstood that the left hand side of the equation Eqn. (2)
depends on the geometry of the space-time and the right
hand side depends on the matter content of the universe
and its distribution. We wish to solve the Einstein field
equations for matter corresponding to a perfect fluid,
where the metric asymptotically approaches the exact so-
lution corresponding to a negative mass Schwarzschild-de
Sitter geometry. The Einstein equations in the presence
of a perfect fluid are well known [5], we list them here
for completeness. A perfect fluid is described by a stress
energy tensor of the form

Tµ⌫ = �pgµ⌫ + (p+ ⇢)UµU⌫ (3)

where p and ⇢ are respectively the pressure and the den-
sity of the perfect fluid when Uµ is its four vector ve-
locity. We choose a frame of reference where the fluid
is at rest, then this four vector velocity is defined by
Uµ = (

p
B, 0, 0, 0), so that it obeys UµUµ = 1. This

means that the only non-zero terms of the stress-energy
tensor are:

T00 = B ⇢ T11 = Ap T22 = Ap r2 T33 = sin2 ✓ T22

(4)
On the other hand, the non zero terms of the Einstein
tensor are:

G00 = B
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G33 = sin2 ✓G22 (8)

Thus we get three independent equations from the Ein-
stein equations:
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rA
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A
= 4⇡(p� ⇢)r2 (11)

These equations will be used to determine the pressure p,
the density ⇢, the time component of the metric B as a
function of the gravitational effective mass function m(r).
We will also use a fourth equation corresponding to the
condition of hydrostatic equilibrium, however this equa-
tion is not independent, and in fact a consequence of the
covariant conservation of the energy-momentum tensor,
which in turn is equivalent to the consistency requirement
of the Einstein equation with the Bianchi identities:

B0

B
=

�2p

p+ ⇢
(12)

Usually a further equation is introduced corresponding
to the equation of state, p = p(⇢), which then picks out
a unique solution, however we will not impose such an
equation. We find the solution numerically. It will be
clear that an equation of state exists which corresponds
to the solution that we find.
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Since A =
⇣
1� 2m(r)

r

⌘�1
, we can calculate the den-

sity expression through the operation Eqn.(9)
2B + Eqn.(10)

2A +
Eqn.(11)

r2 to obtain
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and we can also get an equation for the time component
of the metric B using the operation Eqn.(9)

2B + Eqn.(10)
2A �

Eqn.(11)
r2 to obtain
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Finally, we can combine Eqn.(14) with Eqn.(9),(10),(11)
to get
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p(r) +

+
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4⇡r3 (2m(r)� r)
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To be able to numerically solve the equations, we need
to define the gravitational effective mass function. We
choose:

m(r) =

8
><

>:

0 if r < x

a(r � x)3 if x < r < y
�r3

6 �M if r > y

(16)

This mass parameter interpolates smoothly between
Minkowski space-time in the center to a negative mass
Schwarzschild-de Sitter space-time in the exterior, sepa-
rated by an interpolating region. Our choice is motivated
by the analysis done in [2] where it was shown that the
dominant energy condition is satisfied if:

d
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�
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Although the analysis done in [2] does not exactly apply
since there it was further assumed that B = 1� 2m(r)/r
which we do not assume here, Eqn.(16) satisfies these
conditions.

x, y and a are parameters of the interpolation which
are constrained by imposing that the interpolation be
continuous and have continuous derivative which implies

y =

r
6M
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(19)
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(20)
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FIG. 1: (color online) m(r).

and hence our interpolation has one free parameter. The
mass function is already C2 at r = x, but only C1 at
r = y which is not amenable to numerical analysis. To
make it (infinitely) smooth at r = y we multiply by a
smooth approximation to the appropriate theta function

⇥(r � y) = (tanh!(r � y) + 1)/2 (21)

for a suitable value of ! to get

m(r) = a(r�x)3(1�⇥(r�y))+(
�r3

6
�M)⇥(r�y). (22)

The de Sitter horizon is given by

2m(r)� r = 0 (23)

must be at a much larger radius than the size of the
bubble given by y. The solution of Eqn.(23) must be
when r is in the Schwarzschild-de Sitter region of the
space-time. Neglecting M then gives

2(
�r3

6
�M)� r = 0 ) r ⇡

r
3

⇤
. (24)

Comparing this with the expression for y from Eqn.(19)
yields

r
6M

⇤x
⌧

r
3

⇤
i.e. . (25)

Using these conditions combined with the expressions
of m(r), p(r) and ⇢(r) we get numerical solution of the
pressure and the density of the perfect fluid given respec-
tively by

The numerical solution for B(r) is not particularly
interesting. Instead of directly numerically integrating
Eqn.(12), or Eqn.(14), because of numerical instability,
it is better to find an expression for AB , which comes
straitforwardly from adding Eqn.(9)

A +Eqn.(10)
B which yields

(lnAB)0 = 8⇡G (⇢(r) + p(r)) rA. (26)

Numerically integrating Eqn.(26) yields the curve



• The dominant energy condition demands 
simply: 

• while the Einstein equations are:
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𝜌 ≥ 0
𝜌 ≥ |𝑝|
𝜌² ≥ 0

 (2.72)  

La  condition  d’énergie  forte : 

 𝜌 + 3𝑝 ≥ 0
𝜌 + 𝑝 ≥ 0  (2.73)  

 

2.2.1.2 Interprétation  

En considérant notre résultat  𝑝 = −𝜌 , nous remarquons que toutes les inégalités 

sont satisfaites sauf la première inégalité du système donnée par (2.73),  c’est-à-

dire   la  condition  d’énergie   forte  est  non  valide.  Mais  puisqu’il  existe  beaucoup 

de  système  physique  qui  viole  cette  condition,  nous  allons  admettre  qu’elle  est  

pareillement  violée  par  notre  cas.  Mais  ceci  n’influencera  pas  notre  travail! 

Maintenant  que  nous  avons  vérifié  que  les  conditions  d’énergie  sont  satisfaites,  

nous revenons à nos résultats donnés par (2.67) et (2.70).  Un cosmologique peut 

interpréter  ces  équations  par  le  fait  qu’il  s’agit  d’un  vide  ou  plutôt  de  la  matière  

noir. Mais pour nous, ce résultat reste toujours non satisfaisant puisque nous 

avons   supposé   qu’au   niveau   de   la   zone   d’interpolation   nous   avions un fluide 

parfait. Et par la suite, il est illogique de trouver 𝑝 = −𝜌 là-dessus.  

Alors nous allons garder ce résultat pour les zones extérieure et intérieure de la 

bulle déjà définies respectivement   par   l’espace   Schwarzschild-De Sitter et De 

Sitter pure puisque ce résultat est déjà attendu pour ces deux espaces. Mais nous 

continuons  à  chercher  à  chercher  la  pression  pour  la  zone  d’interpolation. 

Maintenant   que   nous   avons   trouvé   un   résultat   convainquant   pour   l’intérieur   et  

l’extérieur   de   la   bulle,   nous   allons vérifier ces résultats en faisant les calculs 
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are exact solutions of the Einstein equations in the pres-
ence of a constant, background energy-momentum den-
sity (which can be alternatively interpreted as a cosmo-
logical constant), which correspond to an exponentially
evolving space-time geometry with a singular, point like
mass. The solutions contain two parameters, the value
of the mass and the value of the constant energy den-
sity (or cosmological constant). Either can be positive
or negative. Negative energy-momentum density gives
rise to anti-de Sitter space-time while positive energy-
momentum density gives rise to de Sitter space-time.
Anti-de Sitter space already on its own, does not satisfy
the dominant energy condition, thus we focus on de Sitter
space. The mass parameter describes a positive or nega-
tive point-like mass. As in the case of pure Schwarzschild
geometry, the positive mass is hidden behind an event
horizon, while the negative mass singularity is naked,
and occurs at a fixed spatial point. The positive en-
ergy theorem is not applicable since the space-time is not
asymptotically Minkowski. The negative mass singular-
ity can be smoothed out in a de Sitter background while
maintaining the dominant energy condition everywhere,
as was shown in [2]. However, in [2], no attempt was
made to find any type of energy-momentum which could
give rise to the deformation that is required, only the ex-
istence of a suitable deformation was demonstrated. In
this paper we address this question and we show that
energy-momentum corresponding to a perfect fluid can
be used to provide a suitable deformation. We find bub-
ble like configurations which are non-singular, satisfy the
dominant energy condition everywhere, and asymptoti-
cally approach the negative mass Schwarzschild-de Sitter
geometry.

Equations of motion- The metric of a spherically sym-
metric space-time can be taken as

ds2 = B(r)dt2 �A(r)dr2 � r2d✓2 � r2sin2✓d�2 (1)

where A(r) parametrized as A(r) = (1�2m(r)/r)�1 and
m(r) admits the interpretation as the effective gravita-
tional mass inside a radius r. This metric is required to
be a solution of the Einstein field equations:

Gµ⌫ = 8⇡Tµ⌫ (2)

where we take that c = G = 1. It has been commonly un-
derstood that the left hand side of the equation Eqn. (2)
depends on the geometry of the space-time and the right
hand side depends on the matter content of the universe
and its distribution. We wish to solve the Einstein field
equations for matter corresponding to a perfect fluid,
where the metric asymptotically approaches the exact so-
lution corresponding to a negative mass Schwarzschild-de
Sitter geometry. The Einstein equations in the presence
of a perfect fluid are well known [5], we list them here
for completeness. A perfect fluid is described by a stress
energy tensor of the form

Tµ⌫ = �pgµ⌫ + (p+ ⇢)UµU⌫ (3)

where p and ⇢ are respectively the pressure and the den-
sity of the perfect fluid when Uµ is its four vector ve-
locity. We choose a frame of reference where the fluid
is at rest, then this four vector velocity is defined by
Uµ = (

p
B, 0, 0, 0), so that it obeys UµUµ = 1. This

means that the only non-zero terms of the stress-energy
tensor are:

T00 = B ⇢ T11 = Ap T22 = Ap r2 T33 = sin2 ✓ T22

(4)
On the other hand, the non zero terms of the Einstein
tensor are:
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G33 = sin2 ✓G22 (8)

Thus we get three independent equations from the Ein-
stein equations:

B00

2A
� B0

4A


B0

B
+

A0

A

�
+

B0

rA
= 4⇡(3p+ ⇢)B (9)

�B00

2B
+

B0

4B


B0

B
+

A0

A

�
+

A0

rA
= 4⇡(p� ⇢)A (10)

1� r

2A


B0

B
� A0

A

�
� 1

A
= 4⇡(p� ⇢)r2 (11)

These equations will be used to determine the pressure p,
the density ⇢, the time component of the metric B as a
function of the gravitational effective mass function m(r).
We will also use a fourth equation corresponding to the
condition of hydrostatic equilibrium, however this equa-
tion is not independent, and in fact a consequence of the
covariant conservation of the energy-momentum tensor,
which in turn is equivalent to the consistency requirement
of the Einstein equation with the Bianchi identities:

B0

B
=

�2p

p+ ⇢
(12)

Usually a further equation is introduced corresponding
to the equation of state, p = p(⇢), which then picks out
a unique solution, however we will not impose such an
equation. We find the solution numerically. It will be
clear that an equation of state exists which corresponds
to the solution that we find.



• Normally the Einstein equations are 
augmented by an equation of state that links 
the pressure to the density, yielding four 
equations in the four functions                        
and         . 

• However we will take a different approach.  
Choosing:
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Since A =
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, we can calculate the den-

sity expression through the operation Eqn.(9)
2B + Eqn.(10)
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r2 to obtain
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and we can also get an equation for the time component
of the metric B using the operation Eqn.(9)

2B + Eqn.(10)
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Eqn.(11)
r2 to obtain
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Finally, we can combine Eqn.(14) with Eqn.(9),(10),(11)
to get
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r (2m(r)� r)
p(r) +

+
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4⇡r3 (2m(r)� r)
(15)

To be able to numerically solve the equations, we need
to define the gravitational effective mass function. We
choose:

m(r) =

8
><

>:

0 if r < x

a(r � x)3 if x < r < y
�r3

6 �M if r > y

(16)

This mass parameter interpolates smoothly between
Minkowski space-time in the center to a negative mass
Schwarzschild-de Sitter space-time in the exterior, sepa-
rated by an interpolating region. Our choice is motivated
by the analysis done in [2] where it was shown that the
dominant energy condition is satisfied if:
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Although the analysis done in [2] does not exactly apply
since there it was further assumed that B = 1� 2m(r)/r
which we do not assume here, Eqn.(16) satisfies these
conditions.

x, y and a are parameters of the interpolation which
are constrained by imposing that the interpolation be
continuous and have continuous derivative which implies

y =

r
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and hence our interpolation has one free parameter. The
mass function is already C2 at r = x, but only C1 at
r = y which is not amenable to numerical analysis. To
make it (infinitely) smooth at r = y we multiply by a
smooth approximation to the appropriate theta function

⇥(r � y) = (tanh!(r � y) + 1)/2 (21)

for a suitable value of ! to get

m(r) = a(r�x)3(1�⇥(r�y))+(
�r3

6
�M)⇥(r�y). (22)

The de Sitter horizon is given by

2m(r)� r = 0 (23)

must be at a much larger radius than the size of the
bubble given by y. The solution of Eqn.(23) must be
when r is in the Schwarzschild-de Sitter region of the
space-time. Neglecting M then gives

2(
�r3

6
�M)� r = 0 ) r ⇡

r
3

⇤
. (24)

Comparing this with the expression for y from Eqn.(19)
yields

r
6M

⇤x
⌧

r
3

⇤
i.e. . (25)

Using these conditions combined with the expressions
of m(r), p(r) and ⇢(r) we get numerical solution of the
pressure and the density of the perfect fluid given respec-
tively by

The numerical solution for B(r) is not particularly
interesting. Instead of directly numerically integrating
Eqn.(12), or Eqn.(14), because of numerical instability,
it is better to find an expression for AB , which comes
straitforwardly from adding Eqn.(9)

A +Eqn.(10)
B which yields

(lnAB)0 = 8⇡G (⇢(r) + p(r)) rA. (26)

Numerically integrating Eqn.(26) yields the curve
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Using these conditions combined with the expressions
of m(r), p(r) and ⇢(r) we get numerical solution of the
pressure and the density of the perfect fluid given respec-
tively by

The numerical solution for B(r) is not particularly
interesting. Instead of directly numerically integrating
Eqn.(12), or Eqn.(14), because of numerical instability,
it is better to find an expression for AB , which comes
straitforwardly from adding Eqn.(9)

A +Eqn.(10)
B which yields

(lnAB)0 = 8⇡G (⇢(r) + p(r)) rA. (26)

Numerically integrating Eqn.(26) yields the curve



• This fixes         and the equations then 
uniquely give us the remaining variables. 

• In this way, the required equation of state is 
uncovered rather than imposed. 

• The Einstein equations become:

2

are exact solutions of the Einstein equations in the pres-
ence of a constant, background energy-momentum den-
sity (which can be alternatively interpreted as a cosmo-
logical constant), which correspond to an exponentially
evolving space-time geometry with a singular, point like
mass. The solutions contain two parameters, the value
of the mass and the value of the constant energy den-
sity (or cosmological constant). Either can be positive
or negative. Negative energy-momentum density gives
rise to anti-de Sitter space-time while positive energy-
momentum density gives rise to de Sitter space-time.
Anti-de Sitter space already on its own, does not satisfy
the dominant energy condition, thus we focus on de Sitter
space. The mass parameter describes a positive or nega-
tive point-like mass. As in the case of pure Schwarzschild
geometry, the positive mass is hidden behind an event
horizon, while the negative mass singularity is naked,
and occurs at a fixed spatial point. The positive en-
ergy theorem is not applicable since the space-time is not
asymptotically Minkowski. The negative mass singular-
ity can be smoothed out in a de Sitter background while
maintaining the dominant energy condition everywhere,
as was shown in [2]. However, in [2], no attempt was
made to find any type of energy-momentum which could
give rise to the deformation that is required, only the ex-
istence of a suitable deformation was demonstrated. In
this paper we address this question and we show that
energy-momentum corresponding to a perfect fluid can
be used to provide a suitable deformation. We find bub-
ble like configurations which are non-singular, satisfy the
dominant energy condition everywhere, and asymptoti-
cally approach the negative mass Schwarzschild-de Sitter
geometry.
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metric space-time can be taken as

ds2 = B(r)dt2 �A(r)dr2 � r2d✓2 � r2sin2✓d�2 (1)

where A(r) parametrized as A(r) = (1�2m(r)/r)�1 and
m(r) admits the interpretation as the effective gravita-
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be a solution of the Einstein field equations:

Gµ⌫ = 8⇡Tµ⌫ (2)
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depends on the geometry of the space-time and the right
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energy tensor of the form
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where p and ⇢ are respectively the pressure and the den-
sity of the perfect fluid when Uµ is its four vector ve-
locity. We choose a frame of reference where the fluid
is at rest, then this four vector velocity is defined by
Uµ = (

p
B, 0, 0, 0), so that it obeys UµUµ = 1. This

means that the only non-zero terms of the stress-energy
tensor are:

T00 = B ⇢ T11 = Ap T22 = Ap r2 T33 = sin2 ✓ T22

(4)
On the other hand, the non zero terms of the Einstein
tensor are:
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Thus we get three independent equations from the Ein-
stein equations:
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These equations will be used to determine the pressure p,
the density ⇢, the time component of the metric B as a
function of the gravitational effective mass function m(r).
We will also use a fourth equation corresponding to the
condition of hydrostatic equilibrium, however this equa-
tion is not independent, and in fact a consequence of the
covariant conservation of the energy-momentum tensor,
which in turn is equivalent to the consistency requirement
of the Einstein equation with the Bianchi identities:

B0

B
=

�2p

p+ ⇢
(12)

Usually a further equation is introduced corresponding
to the equation of state, p = p(⇢), which then picks out
a unique solution, however we will not impose such an
equation. We find the solution numerically. It will be
clear that an equation of state exists which corresponds
to the solution that we find.
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Since A =
⇣
1� 2m(r)
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, we can calculate the den-

sity expression through the operation Eqn.(9)
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r2 to obtain
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and we can also get an equation for the time component
of the metric B using the operation Eqn.(9)
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Finally, we can combine Eqn.(14) with Eqn.(9),(10),(11)
to get
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To be able to numerically solve the equations, we need
to define the gravitational effective mass function. We
choose:

m(r) =

8
><

>:

0 if r < x

a(r � x)3 if x < r < y
�r3

6 �M if r > y

(16)

This mass parameter interpolates smoothly between
Minkowski space-time in the center to a negative mass
Schwarzschild-de Sitter space-time in the exterior, sepa-
rated by an interpolating region. Our choice is motivated
by the analysis done in [2] where it was shown that the
dominant energy condition is satisfied if:

d
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Although the analysis done in [2] does not exactly apply
since there it was further assumed that B = 1� 2m(r)/r
which we do not assume here, Eqn.(16) satisfies these
conditions.

x, y and a are parameters of the interpolation which
are constrained by imposing that the interpolation be
continuous and have continuous derivative which implies

y =

r
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(19)
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⇤y2

6(y � x)2
(20)
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and hence our interpolation has one free parameter. The
mass function is already C2 at r = x, but only C1 at
r = y which is not amenable to numerical analysis. To
make it (infinitely) smooth at r = y we multiply by a
smooth approximation to the appropriate theta function

⇥(r � y) = (tanh!(r � y) + 1)/2 (21)

for a suitable value of ! to get

m(r) = a(r�x)3(1�⇥(r�y))+(
�r3

6
�M)⇥(r�y). (22)

The de Sitter horizon is given by

2m(r)� r = 0 (23)

must be at a much larger radius than the size of the
bubble given by y. The solution of Eqn.(23) must be
when r is in the Schwarzschild-de Sitter region of the
space-time. Neglecting M then gives
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⇤
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Comparing this with the expression for y from Eqn.(19)
yields
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⇤
i.e. . (25)

Using these conditions combined with the expressions
of m(r), p(r) and ⇢(r) we get numerical solution of the
pressure and the density of the perfect fluid given respec-
tively by

The numerical solution for B(r) is not particularly
interesting. Instead of directly numerically integrating
Eqn.(12), or Eqn.(14), because of numerical instability,
it is better to find an expression for AB , which comes
straitforwardly from adding Eqn.(9)

A +Eqn.(10)
B which yields

(lnAB)0 = 8⇡G (⇢(r) + p(r)) rA. (26)

Numerically integrating Eqn.(26) yields the curve
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and hence our interpolation has one free parameter. The
mass function is already C2 at r = x, but only C1 at
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and hence our interpolation has one free parameter. The
mass function is already C2 at r = x, but only C1 at
r = y which is not amenable to numerical analysis. To
make it (infinitely) smooth at r = y we multiply by a
smooth approximation to the appropriate theta function
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Using these conditions combined with the expressions
of m(r), p(r) and ⇢(r) we get numerical solution of the
pressure and the density of the perfect fluid given respec-
tively by

The numerical solution for B(r) is not particularly
interesting. Instead of directly numerically integrating
Eqn.(12), or Eqn.(14), because of numerical instability,
it is better to find an expression for AB , which comes
straitforwardly from adding Eqn.(9)

A +Eqn.(10)
B which yields

(lnAB)0 = 8⇡G (⇢(r) + p(r)) rA. (26)

Numerically integrating Eqn.(26) yields the curve



• We integrate these equations numerically for 
some uninspired values of the parameters 
and find:
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FIG. 2: (color online) Pressure p(r) for the parameters x = .1
G = 1, ⇤ = .001, M = .01,y ⇡ 245.
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From Fig.(2) and Fig.(3) we can see the combination
(⇢(r) + p(r)) vanishes as r becomes large. Thus the ex-
pectation is that AB becomes a constant for large r as
can be seen from Fig.(4). This constant can be taken to
be 1, although it is not so in Fig.(4). However, by rescal-
ing the time coordinate, t !

p
�t, we can impose that

the constant is 1, i.e.. AB ! 1 for large r . Notice that
the Einstein equations, Eqns.(9),(10),(11),(12) all are ho-
mogeneous in B. If B is a solution then so is �B. Thus
asymptotically, B = 1/A and the solution approaches the
exact negative mass Schwarzschild-de Sitter solution.

Conclusions- We have shown that there exist very rea-
sonable configurations of an ideal fluid which give rise
to solutions of the Einstein equations that correspond
asymptotically to negative mass Schwarzschild-de Sitter
space times. The energy-momentum tensor that gives
rise to such space times is perfectly physical, it every-
where satisfies the dominant energy condition. Since the
space time is not asymptotically flat, we evade the posi-

tive energy theorems which would not allow for negative
mass. Negative mass configurations therefore can exist in
de Sitter backgrounds, exactly as have been proposed for
the inflationary phase of the early universe. If a mecha-
nism for production of pairs of particles with positive and
negative mass can be determined, in the early universe
there would be a plasma of positive and negative mass
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FIG. 4: (color online) LogAB.

particles. Such a plasma would in principle cause an ef-
fective screening of gravitational waves, being essentially
opaque for frequencies below the plasma frequency. This
would mean that the initial singularity would never be
accessible to view for us and this would give a resolution
to the initial singularity problem.
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Stable negative mass solutions
• It would still be desirable to find dynamically stable 

solutions that give rise to negative mass. 
• Ideally this would be obtained from some kind of non-

standard matter which obeys an equation of state, but 
satisfies the dominant energy condition. 

• We have not been able to find such an equation of state.  
• However, we have been able to find stable, thin wall 

solutions.  These correspond to spacetimes where and 
exterior negative mass Schwarzschild-de Sitter 
spacetime is separated from an interior spacetime by a 
thin wall.  The Israel junction conditions are imposed at 
the wall.  The source is inside the wall, and is imposed 
to satisfy the dominant energy condition everywhere. 



Thin wall bubbles
• The Israel junction conditions guarantee the 

conservation of energy and momentum 
across a boundary.   

• The induced metric is 

• For a spherical wall at 

Stable gravastars—an alternative to black holes? 1137

3. The mathematical model

Let us consider the class of geometries

ds2 = −
[

1 − 2m(r)

r

]
dt2 +

dr2

1 − 2m(r)/r
+ r2(dθ2 + sin2 θdφ2). (3)

While less general than the class of all static spherically symmetric geometries, this restricted
class of metrics is more than sufficient for our current needs, and includes both the
Schwarzschild and the de Sitter geometries. We will assume that two geometries of this
type are connected along a timelike hypersurface at r = a(t), with spacelike normal, na . By
considering a point at fixed θ and φ and making use of the definition

−dτ 2 = −
[

1 − 2m(a(t))

a(t)

]
dt2 +

1
1 − 2m(a(t))/a(t)

[
da(t)

dt

]2

dt2, (4)

we can reparametrize the position of the timelike hypersurface in terms of τ—the proper
time along this hypersurface—and so determine a(τ ). To understand the dynamics of the
hypersurface we adopt the Israel–Lanczos–Sen thin-shell formalism [9]. The induced metric
on the shell,

hab = gab − nanb, (5)

is given by

hab dxa dxb = −dτ 2 + a(τ )2(dθ2 + sin2 θ dφ2). (6)

We are interested in the extrinsic curvature

Kab = ha
chb

d∇cnd (7)

so that we can then apply the junction conditions to relate the discontinuity in extrinsic
curvature to the surface stress–energy, Sab, located on the shell:

[[Kab]] = −8π

[
Sab − 1

2
Shab

]
, [[Kab − Khab]] = −8πSab. (8)

Here [[X]] denotes the discontinuity in X across the shell. A modern exposition of the thin-
shell formalism (in a rather different physical context) can be found in [10] to which we make
extensive reference in the interests of simplifying the current presentation.

3.1. Static shell

For simplicity, let us first assume the shell is static. The extrinsic curvature may be computed
directly from definition (7), or alternatively in terms of Gaussian normal coordinates (GNC).
Define na = (∂/∂η)a , where

dη = dr√
1 − 2m(r)/r

. (9)

In GNC the extrinsic curvature is

Kab = 1
2

∂gab

∂r

∂r

∂η
, (10)

or in an orthonormal basis,

Kâb̂ =
√

1 − 2m(a)/a diag
( {m(a)/a}′

1 − 2m(a)/a
,

1
a
,

1
a

)
, (11)

where ′ ≡ d/da.
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Then in an orthonormal frame the surface stress–energy tensor is given by Sâb̂ =
diag(σ,−ϑ,−ϑ), and standard manipulations yield both

[[√
1 − 2m(a)/a a−1]] = −4πσ, (12)

and
[[

1 − m(a)/a − m′(a)

a
√

1 − 2m(a)/a

]]
= −8πϑ. (13)

Thus there are only two algebraically independent components of the extrinsic curvature and
they can be related to surface density and surface tension. (Compare, for instance, with
[10], pp 179 ff.3 For calculationally similar though physically distinct presentations, see also
[11–15].)

Equation (12) may be recast as
√

1 − 2m+/a =
√

1 − 2m−/a − 4πσa, (14)

where we use the notation m+ ≡ m(a+) and m− ≡ m(a−). If we square both sides of
equation (14) after rearrangement it follows that

8πσa2
√

1 − 2m−/a = 16π2σ 2a3 + 2(m+ − m−). (15)

A further manipulation of this sort then yields

16π2σ 2a4 + 4m+m− = [8π2σ 2a3 + (m+ + m−)]2. (16)

If we wish to solve (16) for a as a function of the other parameters, we are dealing with a
sextic. In contrast, solving for any one of m+,m− or σ is no worse than a simple quadratic.
One can simplify equation (16) by expressing it in terms of ms = 4πσa2, which represents
the mass of the thin shell itself. We then obtain a (static) ‘master equation’, which directly
relates the three masses (m+,m− and ms) to the radial location of the shell, a:

m2
s + 4m+m− =

[
m2

s

/
(2a) + (m+ + m−)

]2
. (17)

We have gone through this analysis in some detail as we will want to re-use and generalize
this calculation in the dynamic case.

The master equation (17) is only one single equation; one would simultaneously have
to solve the surface tension equation. In many ways the best approach for the static shell is
prescriptive: choose the interior and exterior geometries arbitrarily, then choose a, and then
calculate the shell energy density σ and surface tension ϑ from equations (12) and (13). Of
course, this analysis presently gives no information about stability; we are simply assuming a
static shell. Developing a dynamical stability analysis is our next concern.

3.2. Dynamic shell

We now add time dependence by allowing the shell to move radially, so that the proper time,
τ , at points on the shell is given by (4). It follows from (4) that the (unit) 4-velocity of a point
on the hypersurface (at fixed θ and φ) is

V a =
(√

' + ȧ2

'
, ȧ, 0, 0

)

, (18)

3 Note that equation (15.39b) on page 179 of [10] has a typographical error and should read

ϑ = − 1
8π

{−κτ̂ τ̂ + κθ̂ θ̂ }.
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• For the dynamic case, a slightly more 
complicated analysis yields 

• which can be rewritten as 

• after squaring twice 

• where the mass of the thin shell is defined as

Stable gravastars—an alternative to black holes? 1139

where ! ≡ 1−2m(a)/a, ȧ = da/dτ and we have chosen τ to be future-pointing with respect
to t. The unit normal to the shell is obtained from (18) using the orthogonality condition,
naV

a = 0, giving

na =
(

ȧ

!
,
√

! + ȧ2, 0, 0
)

. (19)

There is an overall sign ambiguity in defining the components of the unit normal (18), which
is fixed by demanding that the chart of the Gaussian normal coordinates (τ, η) be consistently
oriented with respect to the chart of local coordinates (t, r), the Jacobian of the transformation
being

∂(τ, η)

∂(t, r)
=

(√
! + ȧ2 −!−1ȧ

−ȧ !−1
√

! + ȧ2

)

, (20)

with unit determinant and inverse

∂(t, r)

∂(τ, η)
=

(
!−1

√
! + ȧ2 !−1ȧ

ȧ
√

! + ȧ2

)

. (21)

The components of the extrinsic curvature in GNC may be computed using (10) and (21),
or alternatively directly from definition (7). In fact, the second approach is more direct in the
present case. On account of the orthogonality relation, combined with the definition of the
induced metric, we have ha

bV a = V b, so that it immediately follows that

Kτ̂ τ̂ = Kττ = V aV bKab

= V aV b∇anb

= −nbA
b, (22)

where Ab ≡ V a∇aV
b is the 4-acceleration of a point on the shell. Since the 4-acceleration

and 4-velocity are orthogonal we must have Ab = Anb, so that

Kτ̂ τ̂ = −A, (23)

where A is the magnitude of the 4-acceleration of the shell. The angular components of the
extrinsic curvature are easily found to be

Kθ̂ θ̂ = Kφ̂φ̂ = 1
a

√
! + ȧ2. (24)

Imposing the junction conditions, similarly to the case of the static shell, we then have

σ = − 1
4πa

[[√
1 − 2m(a)/a + ȧ2

]]
, (25)

and

ϑ = − 1
8π

[[√
1 − 2m(a)/a + ȧ2

a
+ A

]]

. (26)

Since the restricted class of geometries we are considering possesses a timelike Killing vector,
ka = (∂/∂t)a , the 4-acceleration is easily calculated. Following [10, p 183], we can use both

d
dτ

(kaV
a) = −Aȧ, (27)

and
d

dτ
(kaV

a) = − d
dτ

{√
1 − 2m/a + ȧ2

}
, (28)
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4. The master equation

4.1. Derivation

Let us re-write the dynamical σ equation (25) as
[[√

1 − 2m(a)/a + ȧ2
]]

= −4πσ (a)a, (36)

where we are now keeping arbitrary time dependence in the form of ȧ. That is
√

1 − 2m+(a)/a + ȧ2 =
√

1 − 2m−(a)/a + ȧ2 − 4πσ (a)a. (37)

A series of steps identical to those that lead from (14) to (17) now yields

ms
2(1 + ȧ2) + 4m+m− =

[
m2

s

2a
+ (m+ + m−)

]2

, (38)

where as before ms = 4πσa2 is the mass of the thin shell. This dynamic ‘master equation’ is
of the form of an ‘energy equation’ for a nonrelativistic particle,

1
2 ȧ2 + V (a) = E, (39)

with ‘potential’

V (a) = 1
2

{

1 +
4m+(a)m−(a)

m2
s (a)

−
[
ms(a)

2a
+

(m+(a) + m−(a))

ms(a)

]2
}

, (40)

and ‘energy’ E = 0.
There will then be a strictly stable solution for the shell (stable against spherically

symmetric radial oscillations) if and only if there is some ms(a) and some a0 such that
we simultaneously have

V (a0) = 0, V ′(a0) = 0, V ′′(a0) > 0. (41)

A small quirk in this relativistic calculation is that since E ≡ 0, the situation where V (a) ≡ 0,
which in nonrelativistic mechanics corresponds to neutral equilibrium, is now converted to a
situation of stable equilibrium (since now, because one is not free to increase the ‘energy’ E,
one has ȧ ≡ 0).

There is a less stringent notion of stability that is also useful, that of ‘bounded excursion’.
Suppose we have a2 > a1 such that

V (a1) = 0, V ′(a1) ! 0, V (a2) = 0, V ′(a2) " 0, (42)

with V (a) < 0 for a ∈ (a1, a2). In this situation the motion of the shell remains bounded by
the interval (a1, a2). Although not strictly stable, since the shell does in fact move, this notion
of ‘bounded excursion’ more accurately reflects some of the aspects of stability naturally
arising in nonrelativistic mechanics. In particular, it is simply a version of the standard
stability criterion for orbits about the fixed point that would exist if we were free to arbitrarily
specify the constant E on the rhs of (39), and corresponds to orbits about the fixed point which
are ‘stable but not asymptotically stable’. In the present context, perturbing the potential by
adding a small negative offset

V (a) → V (a) − ϵ2 (43)

will generically convert a strictly stable potential to one exhibiting ‘bounded excursion’.
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• This equation has the form of an energy 
equation for a non-relativistic particle 

• however with vanishing  “energy”: 
• There will be stable, static solutions if we 

can find a radius        where 
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of ‘bounded excursion’ more accurately reflects some of the aspects of stability naturally
arising in nonrelativistic mechanics. In particular, it is simply a version of the standard
stability criterion for orbits about the fixed point that would exist if we were free to arbitrarily
specify the constant E on the rhs of (39), and corresponds to orbits about the fixed point which
are ‘stable but not asymptotically stable’. In the present context, perturbing the potential by
adding a small negative offset

V (a) → V (a) − ϵ2 (43)

will generically convert a strictly stable potential to one exhibiting ‘bounded excursion’.
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4. The master equation

4.1. Derivation

Let us re-write the dynamical σ equation (25) as
[[√

1 − 2m(a)/a + ȧ2
]]

= −4πσ (a)a, (36)

where we are now keeping arbitrary time dependence in the form of ȧ. That is
√

1 − 2m+(a)/a + ȧ2 =
√

1 − 2m−(a)/a + ȧ2 − 4πσ (a)a. (37)

A series of steps identical to those that lead from (14) to (17) now yields

ms
2(1 + ȧ2) + 4m+m− =

[
m2

s

2a
+ (m+ + m−)

]2

, (38)

where as before ms = 4πσa2 is the mass of the thin shell. This dynamic ‘master equation’ is
of the form of an ‘energy equation’ for a nonrelativistic particle,

1
2 ȧ2 + V (a) = E, (39)

with ‘potential’

V (a) = 1
2

{

1 +
4m+(a)m−(a)

m2
s (a)

−
[
ms(a)

2a
+

(m+(a) + m−(a))

ms(a)

]2
}

, (40)

and ‘energy’ E = 0.
There will then be a strictly stable solution for the shell (stable against spherically

symmetric radial oscillations) if and only if there is some ms(a) and some a0 such that
we simultaneously have

V (a0) = 0, V ′(a0) = 0, V ′′(a0) > 0. (41)

A small quirk in this relativistic calculation is that since E ≡ 0, the situation where V (a) ≡ 0,
which in nonrelativistic mechanics corresponds to neutral equilibrium, is now converted to a
situation of stable equilibrium (since now, because one is not free to increase the ‘energy’ E,
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In a subsequent article, [9] it was shown that with energy and momentum corresponding to that of an ideal fluid,
there exist bubble like configurations with the exterior space-time given exactly by the negative mass Schwarzschild-de
Sitter space-time. However in [9], no dynamics were accorded to the ideal fluid, no equation of state was imposed.
The energy-momentum of an ideal fluid, in the comoving coordinate system, is characterized by two functions, the
pressure and the density, and the dominant energy condition corresponds to:

⇢(r) � 0 ⇢(r) � |p(r)| (3)

Einstein’s equations are underdetermined and usually an equation of state relating ⇢ to p is specified, giving rise
to a unique solution. Instead of providing the equation of state, in [9], the coefficient of dr2 in the metric was
specified. It was smoothly and explicitly deformed inside a radius y till r = 0, from the negative mass Schwarzschild-
de Sitter metric outside, in a manner that eliminated the singularity at the origin. Einstein’s dynamical equations
were solved (numerically) for the coefficient of dt2 in the metric, and for the density and pressure. It was observed
that the dominant energy condition Eqn. (3) was satisfied. Thus it was shown that perfectly physical matter, that
corresponding to an ideal fluid, could in principle organize itself to correspond to localized regions of negative mass.

However, this work was still unsatisfactory, stability of the solution was not addressed. It is still desirable to find
a dynamical system in which actual soliton-like solutions of the dynamical matter/Einstein equations would give rise
to stable, non-singular, static solutions which correspond to localized regions of negative mass. In this letter, we fill
this gap.

2. The setup

We will construct our solutions assuming a spherical geometry and using Schwarzschild coordinates. The solution
will correspond to the exact negative mass Schwarzschild-de Sitter geometry given by Eqn. (2) outside, with ⇤ ! ⇤e,
separated by a thin wall from an inside geometry. The conservation of energy and momentum across the wall is
obtained by imposing the Israel junction conditions [10]. A clear exposition of the application of the Israel junction
conditions is given in [11]. The wall is characterized by two parameters, the energy density per unit area �, and the
surface tension # (defined so that # is positive if the surface wants to contract and negative if the surface wants to
expand). Then the stress-energy tensor of the wall will have the form (in an orthonormal system of coordinates)

Sâb̂ = diag. (�,�#,�#). (4)

Imposing the Israel junction conditions will permit us to find the necessary inside geometry that will give rise to
non-singular, stable solutions.

The interior mass function is taken to be m�(r) which is not specified while the exterior mass function is taken to
be

m+(r) = �2M +
⇤r3

3
(5)

corresponding to an exact negative mass Schwarzschild-de Sitter space-time with mass �M cosmological constant ⇤.
The balance of energy-momentum flux through the interface gives rise to the junction condition in our case:

✓
1� 2m(r)/r � ⇤ir2

3
+ ṙ2

◆1/2

�
✓
1� 2M/r � ⇤er2

3
+ ṙ2

◆1/2

= 4⇡�r (6)
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3
+ ṙ2

◆1/2

�
✓
1� 2M/r � ⇤er2

3
+ ṙ2

◆1/2

= 4⇡�r (7)

where ⇤e is the vacuum energy on the outside while ⇤i is the same on the inside and M is the value of the mass
of the configuration as viewed from the outside (with the standard choice of sign, M < 0 corresponds to a negative
mass).

The junction condition, Eqn.(7) is equally easy to solve for ṙ2, we get

ṙ2 =
1

576⇡2r4�2

"
12m(r)

⇣
3m(r)� 6M + r3

�
⇤e + ⇤i + 48⇡2�2

�⌘

+ 96⇡2r3�2
�
6M + r3(⇤e + ⇤i)� 6r

�
+

�
6M + r3(⇤e � ⇤i)

�2
+ 2304⇡4r6�4

�
(8)
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FIG. 1: (color online) The potential V (r) for generic values of ↵,�, �

V (r0) = 0, V 0(r0) = 0, V 00(r0) > 0. (14)

This is case in which there is a strictly stable solution for the potential of the shell in a certain point r0, at this
point we would also have ṙ = 0 because we are considering a potential with vanishing total energy. There is also a
less restringing case of stability, also established in [11], in that case, V (r) < 0 for r ✏ (r1, r2), with r2 > r1 and such
that

V (r1) = 0, V 0(r1)  0, V (r2) = 0, V 0(r2) � 0, (15)

in which case the shell actually moves so the solution is not strictly stable, but remains bounded in the interval
(r1, r2). We are interested in the case of strictly stable solution.

We want to find a potential that has a minimum. To do this, we need to invert equation (13) in order to get m�(r)
for this unknown potential. Solving for the mass m�(r) it is found that

m�(r) =
1

2

 
2m+(r)�

ms(r)2

r
± 2ms(r)

r
�2m+(r)� 2rV (r) + r

r

!
(16)

The mass near the center is expected to be zero, and we can find a potential that will make this condition happen in
the limit. Only the positive root for m�(r) will make the potential force the mass to go to zero at r = 0. The shape
of the potential near zero would be

V (r)r!0 =
1

2

✓
1 +

2|M |
r

� |M |2

ms(r)2

◆
, (17)

and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.
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The mass near the center is expected to be zero, and we can find a potential that will make this condition happen in
the limit. Only the positive root for m�(r) will make the potential force the mass to go to zero at r = 0. The shape
of the potential near zero would be

V (r)r!0 =
1

2

✓
1 +

2|M |
r

� |M |2

ms(r)2

◆
, (18)

and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.
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(1 + U)2 = 1 + Ṽ + �2r4 + 2�2r3 � ⇤�2r6 (20)

The mass near the center is expected to be zero, and we can find a potential that will make this condition happen in
the limit. Only the positive root for m�(r) will make the potential force the mass to go to zero at r = 0. The shape
of the potential near zero would be
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and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.

THIS IS JUST AN IDEA TO EXPLAIN WHY WE NEED TO ADD HIGHER ORDER TERMS TO THE POTENTIAL

If we check the conditions mentioned above, that is the stability for the potential and the dominant energy conditions,
we find that there is no minimum for the potential in the range in which the stability and energy conditions are fulfilled,
as we can see in figure 2. The mass (blue) is positive and goes to zero near the origin, the dominant energy conditions
are satisfied but the potential has no minimum and that means that the solution is not stable.

FIG. 2: The mass (blue), the dominant energy conditions (tangerine and green) and the potential near the origin (orange).
The parameters as the cosmological constant inside and outside and the energy density per unit area are listed above.

As we can see in the previous figure, it is necessary to add higher order terms that will not contribute to the
potential near the origin but that could make a minimum further . For convenience, we start by adding terms that
will go as powers of 3.

So, based on equation (9), we look for a potential of the shape
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and higher order terms in r, and that will also fulfil the dominant energy condition. Here we have recovered the
term that goes with ⇤e in the expression for the mass (16) because it is actually the term that is neglected near zero
and the contributions for higher terms are important later. The dominant term near zero is ↵

r4 which corresponds to
� |M |2

ms(r)2

The dominant energy condition is equivalent to the next two inequalities,
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(1 + U)2 = 1 + Ṽ + �2r4 + 2�2r3 � ⇤�2r6 (20)

m� = M
�
1
2

�
⇤� �2

�
r3 + U

�
(21)

The mass near the center is expected to be zero, and we can find a potential that will make this condition happen in
the limit. Only the positive root for m�(r) will make the potential force the mass to go to zero at r = 0. The shape
of the potential near zero would be

V (r)r!0 =
1

2

✓
1 +

2|M |
r

� |M |2

ms(r)2

◆
, (22)

and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.

THIS IS JUST AN IDEA TO EXPLAIN WHY WE NEED TO ADD HIGHER ORDER TERMS TO THE POTENTIAL

If we check the conditions mentioned above, that is the stability for the potential and the dominant energy conditions,
we find that there is no minimum for the potential in the range in which the stability and energy conditions are fulfilled,
as we can see in figure 2. The mass (blue) is positive and goes to zero near the origin, the dominant energy conditions
are satisfied but the potential has no minimum and that means that the solution is not stable.

FIG. 2: The mass (blue), the dominant energy conditions (tangerine and green) and the potential near the origin (orange).
The parameters as the cosmological constant inside and outside and the energy density per unit area are listed above.

As we can see in the previous figure, it is necessary to add higher order terms that will not contribute to the
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FIG. 2: (color online) The potential 1 + Ṽ (r).

FIG. 3: (color online) The dominant energy conditions Eqn.(25) labelled here as (dec1) and (dec2) and the interior mass
labelled Eqn.(27) here as m-.
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• Potential for generic values of the 
parameters.

4

The two roots are positive and negative, the cube root maintains the sign, and we discard the negative root. Thus

we find one positive root where the derivative of the potential vanishes. The positive root is always

r0 =

 p
�2 + 32↵� � �

4�

!1/3

. (18)

For this value of the radius to give a static solution requires that the potential vanish

V (r0) = 0 (19)

which can be simply arranged by choosing the parameters M,⇤,⇤i and �. Due to the asymptotic behaviour of the

potential, this extremum must be a maximum. Thus it is obvious that one can have an unstable, negative mass

FIG. 1: (color online) The potential V (r) for generic values of ↵,�, �

bubble when the parameters are exactly so that the top of the potential has a double root at its maximum. For other

generic values of the parameters, there may be no turning points when the potential never crosses zero. In this case,

initially expanding bubbles will continue to expand to infinite size, while initially collapsing bubbles will shrink away

to zero size. When the parameters give a potential that does cross zero, the solutions split into two classes, those

of radius greater than the larger zero crossing, which collapse to the minimum size given by the radius of the zero

crossing and then bounce back to expand to infinite radius, and those of radius smaller than the smaller zero crossing.

These bubbles will expand to a maximum size given by the radius of the smaller zero crossing, and then shrink back

down to zero size. It is clear that our mass distributions satisfy the dominant energy condition. Hence we have an

initial physical mass distribution that in the latter case shrinks down to a singular solution of the exact negative mass

Schwarzschild-de Sitter space-time which has a naked singularity. Thus we have shown there exists perfectly physical

initial data, that satisfying the dominant energy condition, which collapses to a naked singularity, albeit of negative

mass. This is a counterexample to the cosmic censorship hypothesis. [13][14]

Stable negative mass solutions

We can invert the potential solving for the interior mass function as

m�(r) = �8⇡2�2r3 +�M +
⇤r3

6
+ 4⇡�r2

s

1� 2V (r)� 2

r
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Then making the further substitution

� 2V (r) =
1 + Ṽ (r)

�2r4
(21)

we find
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�1 + 1

2
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1 + Ṽ (r) + �2r4 + 2�2r3 � ⇤�2r6
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• Numerical experimentation gives the 
solution
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Conclusions and Speculations
• We have shown that negative mass configurations which 

everywhere satisfy the dominant energy condition, can 
exist within non-asymptotically flat space-times. 

• This could have important consequences for the early 
universe, where the inflationary phase corresponds to a 
de Sitter universe. 

• Pair production of positive and negative mass pairs 
would give rise to a strange gravitational plasma.   

• The negative mass particles would chase after the 
positive mass particles and in principle always exit any 
Hubble volume.  However, for an infinite universe, there 
would always be such pairs entering the Hubble volume 
from outside, so the entire system would be stable.



• A gas/plasma of positive and negative mass 
particles would have strange damping 
properties. 

• It could damp out gravitational waves! 
• We speculate that such a plasma might 

screen gravitational waves rendering the 
initial singularity always hidden behind an 
opaque curtain. 



Real negative mass as opposed to 
relative negative mass

• There has been criticism that the mass we are 
discussing is somehow not real. 

• The reason is that a trivial analysis indicates 
that for even spin messenger fields, like 
charges attract (while for odd spin, they repel) 

• This is based on the propagator of the 
messenger field and the force between like 
charges



• thus the potential between sources is given 
by 

• However, for negative gravitational charges 
we must take 

• which grossly violates the dominant energy 
condition. 
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The mass near the center is expected to be zero, and we can find a potential that will make this condition happen
in the limit. Only the positive root for m�(r) will make the potential force the mass to go to zero at r = 0. The
shape of the potential near zero would be
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and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.

THIS IS JUST AN IDEA TO EXPLAIN WHY WE NEED TO ADD HIGHER ORDER TERMS TO THE POTENTIAL

If we check the conditions mentioned above, that is the stability for the potential and the dominant energy conditions,
we find that there is no minimum for the potential in the range in which the stability and energy conditions are fulfilled,
as we can see in figure 2. The mass (blue) is positive and goes to zero near the origin, the dominant energy conditions
are satisfied but the potential has no minimum and that means that the solution is not stable.

As we can see in the previous figure, it is necessary to add higher order terms that will not contribute to the
potential near the origin but that could make a minimum further . For convenience, we start by adding terms that
will go as powers of 3.

So, based on equation (9), we look for a potential of the shape
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and higher order terms in r, and that will also fulfil the dominant energy condition. Here we have recovered the
term that goes with ⇤e in the expression for the mass (16) because it is actually the term that is neglected near zero
and the contributions for higher terms are important later. The dominant term near zero is ↵

r4 which corresponds to
� |M |2
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The dominant energy condition is equivalent to the next two inequalities,
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and away from zero, one could have higher powers of r such that the potential would still respect the shape near the
origin.
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If we check the conditions mentioned above, that is the stability for the potential and the dominant energy conditions,
we find that there is no minimum for the potential in the range in which the stability and energy conditions are fulfilled,
as we can see in figure 2. The mass (blue) is positive and goes to zero near the origin, the dominant energy conditions
are satisfied but the potential has no minimum and that means that the solution is not stable.

As we can see in the previous figure, it is necessary to add higher order terms that will not contribute to the
potential near the origin but that could make a minimum further . For convenience, we start by adding terms that
will go as powers of 3.

So, based on equation (9), we look for a potential of the shape
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and higher order terms in r, and that will also fulfil the dominant energy condition. Here we have recovered the
term that goes with ⇤e in the expression for the mass (16) because it is actually the term that is neglected near zero
and the contributions for higher terms are important later. The dominant term near zero is ↵
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• We need to find a mechanism for the creation of 
positive-negative mass pairs (since the overall 
mass is conserved). 

• There are exact solutions which correspond to 
black holes separated by struts, Weyl type 
metrics.  A configuration of two black holes on 
either side of a negative mass solution would 
require no struts, or two negative mass solutions 
on either side of a black hole if M=1/4 (-m) or 
vice versa.  Euclideanization of these solutions 
might give the appropriate Euclidean instanton.

Cosmological constant



• The pair creation would of course be 
controlled by the cosmological constant, and 
if there is any kind of Lenz’s law behaviour, 
pair creation would tend to reduce the 
cosmological constant. 

• Thus pairs would be created until the 
cosmological constant is essentially rendered 
zero, after which pairs can no longer be 
created.



Idle Speculation and Conclusions
• A negative-positive mass pair would accelerate away, the 

negative mass particle chasing the positive mass one.  
Latching on to a system like this would provide a kind of 
“warp drive” for fuel-less transport. 

• Creating a negative mass particle is an exothermic process.  
One could mine unlimited energy by creating such 
particles, and then sending them away. 

• Negative mass particles would make the ultimate armour 
piercing ordnance.  The denser the material of the armour, 
the more the negative mass particle is attracted to it, and 
would destroy it upon contact.  See: 

• “Negative mass”  
Richard T Hammond. Aug 6, 2013. 7 pp.  
e-Print: arXiv:1308.2683 [gr-qc] | PDF
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