∂TRIUMF

Nuclear reactions important for astrophysics from *ab initio* theory

Theory Canada 14

UBC, Vancouver, BC May 31 - June 1, 2019

Petr Navratil

TRIUMF

Collaborators: S. Quaglioni (LLNL), G. Hupin (Orsay), M. Vorabbi, A. Calci (TRIUMF), P. Gysbers (UBC/TRIUMF), M. Gennari (Waterloo), J. Dohet-Eraly (ULB), R. Roth (Darmstadt)

Discovery, accelerate

1

- Introduction to ab initio No-Core Shell Model with Continuum (NCSMC)
- Polarized ³H(d,n)⁴He fusion
- ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be} \& {}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li capture reactions}$
- ¹¹C(p, γ)¹²N
- ¹⁴C(n, γ)¹⁵C

First principles or ab initio nuclear theory

First principles or *ab initio* nuclear theory – what we do at present

Ab initio

•

- ♦ Degrees of freedom: Nucleons
- ♦ All nucleons are active
- ♦ Exact Pauli principle
- ♦ Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data

4

♦ Controllable approximations

Chiral Effective Field Theory

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD ($m_u \approx m_d \approx 0$), spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_{χ})
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

Conceptually simplest *ab initio* method: No-Core Shell Model (NCSM)

- Basis expansion method
 - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
 - Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative-coordinate and Slater determinant basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$(A) \bigoplus \Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$(A) \bigotimes \Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

	Progress in Particle and Nuclear Physics 69 (2013) 131-181	
	Contents lists available at SciVerse ScienceDirect	Transmission and the second se
	Progress in Particle and Nuclear Physics	Terrent and the second s
ELSEVIER	journal homepage: www.elsevier.com/locate/ppnp	Here is the second seco

Review Ab initio no core shell model Bruce R. Barrett ^a, Petr Navrátil ^b, James P. Vary^{c,*}

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

NCSM
$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{A}_{Ni}$$

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

...using the Resonating Group Method (RGM) ideas

Extending no-core shell model beyond bound states

Include more many nucleon correlations... $N_{\underline{\mathrm{max}}}$ $\Psi^A =$ $c_{Ni} \Phi^A_{Ni}$ NCSM N=0 i +(A-a)(a) $I_{A-a,a}$ + $\left(a_{2\mu}\right)$ $\vec{r}_{\mu 1}$ $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

...using the Resonating Group Method (RGM) ideas

...

+

 $(a_{1\mu})$

 $r_{\mu 2}$

 $\left(a_{3\mu}\right)$

Coupled NCSMC equations

10

Solved by Microscopic R-matrix theory on a Lagrange mesh – efficient for coupled channels

Deuterium-Tritium fusion

- The $d^{+3}H \rightarrow n^{+4}He$ reaction
 - The most promising for the production of fusion energy in the near future
 - Used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, important for Big Bang nucleosynthesis

FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

Importance of the tensor and 3N force

12

Assuming the fusion proceeds only in S-wave with spins of D and T completely aligned: Polarized cross section 50% higher than unpolarized

- While the DT fusion rate has been measured extensively, a fundamental understanding of the process is still missing
- Very little is known experimentally of how the polarization of the reactants' spins affects the reaction

$$\sigma_{unpol} = \sum_{J} \frac{2J+1}{(2I_{D}+1)(2I_{T}+1)} \sigma_{J}$$

$$\approx \frac{1}{3}\sigma_{1}^{2} + \frac{2}{3}\sigma_{3}^{3}$$

$$\sigma_{pol} \approx 1.5 \sigma_{unpol}$$

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{\text{c.m.}}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{\text{c.m.}})\right)$$

https://doi.org/10.1038/s41467-018-08052-6 OPEN

Ab initio predictions for polarized deuteriumtritium thermonuclear fusion

Guillaume Hupin^{1,2,3}, Sofia Quaglioni ³ & Petr Navrátil⁴

NCSMC calculation demonstrates impact of partial waves with l > 0as well as the contribution of l = 0 $J^{\pi} = \frac{1}{2}^{+}$ channel

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{\text{c.m.}}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{\text{c.m.}})\right)$$

ARTICLE

Ab initio predictions for polarized deuteriumtritium thermonuclear fusion

OPEN

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu (k_b T)^3}} \int_0^\infty S(E) \exp\left(-\frac{E}{k_b T} - \sqrt{\frac{E_g}{E}}\right) dE,$$

For a realistic 80% polarization, reaction rate increases by ~32% or the same rate at ~45% lower temperature

Big Bang nucleosythesis

16

Solar *p-p* chain

17

	Contents lists available at ScienceDirect	PHYSICS
-21-21 - 21-21	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

 3 He $(\alpha, \gamma)^{7}$ Be and 3 H $(\alpha, \gamma)^{7}$ Li astrophysical *S* factors from the no-core shell model with continuum

Jérémy Dohet-Eraly^{a,*}, Petr Navrátil^a, Sofia Quaglioni^b, Wataru Horiuchi^c, Guillaume Hupin^{b,d,1}, Francesco Raimondi^{a,2}

Theoretical calculations suggest that the most recent and precise ⁷Be and ⁷Li data are inconsistent

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

³He-⁴He and ³H-⁴He radiative capture

p+¹¹C scattering and ${}^{11}C(p,\gamma){}^{12}N$ capture

¹¹C(p,γ)¹²N capture relevant in hot *p*-*p* chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ⁴He(αα,γ)¹²C

 ${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(p,\gamma){}^{13}O(\beta^{+},\nu){}^{13}N(p,\gamma){}^{14}O(\beta^{+},\nu){}^{14}$

 ${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(\beta^{+},\nu){}^{12}C(p,\gamma){}^{13}N(p,\gamma){}^{14}O$ ${}^{11}C(\beta^{+}\nu){}^{11}B(p,\alpha){}^{8}Be({}^{4}He,{}^{4}He)$

$p+^{11}C$ scattering and $^{11}C(p,\gamma)^{12}N$ capture

- NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way
 - ¹¹C: 3/2⁻, 1/2⁻, 5/2⁻, 3/2⁻ NCSM eigenstates
 - ¹²N: $\geq 6 \pi = +1$ and $\geq 4 \pi = -1$ NCSM eigenstates

NCSMC calculations to be validated by TRIUMF scattering cross section measurement and applied to calculate the ${}^{11}C(p,\gamma){}^{12}N$ capture

$^{14}C(n,\gamma)^{15}C$ capture cross section

Comparison to Karlsruhe experiment – Phys. Rev. C 77, 015804 (2008)

Relevant for

Inhomogeneous Big Bang models

Neutron induced CNO cycles

Neutrino driven wind models for the r-process

Validation of Coulomb dissociation method

Conclusions

- *Ab initio* calculations of nuclear structure and reactions becoming feasible beyond the lightest nuclei
 - Make connections between the low-energy QCD, many-body systems, and nuclear astrophysics
- Polarized DT fusion investigated within NCSMC
 - Sheds light on importance of I>0 partial waves
- Analysis of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be} \& {}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$ capture reactions
 - Experimental data inconsistent
- NCSMC applied to predict for ${}^{11}C(p,\gamma){}^{12}N$ capture
 - Support for upcoming TRIUMF ¹¹C+p scattering experiment
- NCSMC calculations of ¹⁵C sd-shell halo nucleus in progress
 - $14C(n,\gamma)^{15}C$ capture cross section in agreement with experiment

∂TRIUMF

Thank you! Merci!

Discovery, accelerated

Why three-nucleon forces?

Eliminating degrees of freedom leads to three-body forces.

Two-pion exchange with virtual Δ excitation – Fujita & Miyazawa (1957)

- Leading three-nucleon force terms
 - Long-range two-pion exchange
 - Medium-range one-pion exchange + two-nucleon contact
 - Short range three-nucleon contact

The question is not: Do three-body forces enter the description? The only question is: How large are three-body forces?

NCSMC calculation of the DT fusion

$$|\Psi\rangle = \sum_{\lambda} c_{\lambda} \left| \stackrel{^{5}\text{He}}{\bigoplus}, \lambda \right| + \int d\vec{r} \, u_{\nu_{DT}}(\vec{r}) \hat{A}_{DT} \left| \stackrel{\vec{r}}{\bigoplus}_{T} , \nu_{DT} \right| + \int d\vec{r} \, u_{\nu_{n\alpha}}(\vec{r}) \hat{A}_{n\alpha} \left| \stackrel{\vec{r}}{\bigoplus}_{\alpha} , \nu_{n\alpha} \right|$$

- 2x7 static ⁵He eigenstates computed with the NCSM
- Continuous D-T(g.s.) cluster states (entrance channel)
 - Including positive-energy eigenstates of D to account for distortion
- Continuous n-⁴He(g.s.) cluster states (exit channel)
- Chiral NN+3N(500) interaction

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{\text{c.m.}}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{\text{c.m.}})\right)$$

0.75 0.60 $\begin{bmatrix} 1 & 0.45 \\ 0.45 \end{bmatrix} \begin{bmatrix} 0.45 \\ 0.30 \end{bmatrix}$ C.M., polarized C.M., unpolarized 0.15Lab. (neutron angle), polarized Lab. (⁴He angle), polarized 30 90 15060 120 0 θ [deg]

For a realistic 80% polarization, outgoing neutrons and alphas emitted dominantly in the perpendicular direction to the magnetic field

tritium thermonuclear fusion

ARTICLE

Guillaume Hupin^{1,2,3}, Sofia Quaglioni () ³ & Petr Navrátil⁴

Ab initio predictions for polarized deuterium-

Halo sd-shell nucleus ¹⁵C and its unbound mirror ¹⁵F

• Motivation:

- Halo ¹/₂+ S-wave and 5/2⁺ D-wave bound states
- ${}^{14}C(n,\gamma){}^{15}C$ capture relevant for astrophysics
- Unbound ¹⁵F mirror very narrow unnatural parity resonances embedded in continuum predicted in ¹⁴O(p,p)¹⁴O
 - measured at GANIL
- Calculations in progress all results preliminary
- NN chiral interaction N³LO Entem & Machleidt 2003, SRG evolved with λ = 2.0 fm⁻¹
- 3N chiral interaction N²LO with local/non-local regulator, SRG evolved with λ = 2.0 fm⁻¹

29

- NCSMC
 - ¹⁴C (¹⁴O) 0⁺ and 2⁺ eigenstates
 - ¹⁵C (¹⁵F) lowest 7 positive and 3 negative parity eigenstates

- NCSMC
 - ¹⁴C (¹⁴O) 0⁺ and 2⁺ eigenstates
 - ¹⁵C (¹⁵F) lowest 7 positive and 3 negative parity eigenstates

- NCSMC
 - ¹⁴C (¹⁴O) 0⁺ and 2⁺ eigenstates
 - ¹⁵C (¹⁵F) lowest 7 positive and 3 negative parity eigenstates

- NCSMC
 - ¹⁴C (¹⁴O) 0⁺ and 2⁺ eigenstates
 - ¹⁵C (¹⁵F) lowest 7 positive and 3 negative parity eigenstates

Table 15.1 from (1991AJ01): Energy levels of $^{15}\mathrm{C}\,^\mathrm{a}$

$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	$ au$ or $\Gamma_{\rm c.m.}$ (keV)	Decay	Reactions
g.s.	$\frac{1}{2}^+; \frac{3}{2}$	$\tau_{1/2} = 2.449 \pm 0.005 \; \mathrm{s}$	β^{-}	1, 2, 3, 4, 6, 7, 9
		$ g = 2.63 \pm 0.14$		
0.7400 ± 1.5	$\frac{5}{2}^{+}$	$\tau_{\rm m}=3.76\pm0.10~{\rm ns}$	γ	2, 3, 4, 7, 8
		$g = -0.703 \pm 0.012$		
3.103 ± 4	$\frac{1}{2}^{-}$	$\Gamma_{\rm c.m.} \le 40$		2, 3, 9
4.220 ± 3	$\frac{5}{2}$ -	< 14		2,3
4.657 ± 9	$\frac{3}{2}^{-}$			2,3
4.78 ± 100	$\frac{3}{2}^{+}$	1740 ± 400		6
5.833 ± 20	$(\frac{3}{2}^+)$	64 ± 8		2,6
5.866 ± 8	$\frac{1}{2}^{-}$			2,3
6.358 ± 6	$\left(\frac{5}{2}, \frac{7}{2}^+, \frac{9}{2}^+\right)$	< 20		2,3
6.417 ± 6	$\left(\frac{3}{2} \rightarrow \frac{7}{2}\right)$	≈ 50		2,3
6.449 ± 7	$(\frac{9}{2}^{-}, \frac{11}{2})$	< 14		2,3
6.536 ± 4	а	< 14		2,3
6.626 ± 8	$(\frac{3}{2})$	20 ± 10		2,3
6.841 ± 4	а	< 14		2,3
6.881 ± 4	$(\frac{9}{2})^{a}$	< 20		2,3
7.095 ± 4	$(\frac{3}{2})$	< 15		2,3
7.352 ± 6	$(\frac{9}{2}, \frac{11}{2})$	20 ± 10		2,4
7.414 ± 20				2
7.75 ± 30 $^{\rm b}$				2
8.01 ± 30				2

¹⁵C cluster form factors

- 1/2⁺ S-wave and 5/2⁺ D-wave ANCs
 - $C_{1/2+} = 1.282 \text{ fm}^{-1/2}$ compare to Moschini & Capel inferred from transfer data: 1.26(2) fm^{-1/2}
 - $C_{5/2+} = 0.048 \text{ fm}^{-1/2}$
 - Spectroscopic factors: 0.96 for 1/2⁺ and 0.90 for 5/2⁺ experiments 0.95(5) and 0.69, resp.

0.056(1) fm^{-1/2}