

Investigation of the A=7 systems within the No-Core Shell Model with Continuum

Theory Canada 14 – May 31, 2019

Matteo Vorabbi | TRIUMF

Collaborators: **Petr Navratil** (TRIUMF) Sofia Quaglioni (LLNL) Guillaume Hupin (CNRS)

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos

Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li

> A=7 systems (⁷Be and ⁷Li)

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos

Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li New experiment in progress at LUNA

Lanzhou Experiment ⁶Li(p,γ)⁷Be

Possible resonant enhancement near the threshold

A=7 systems (⁷Be and ⁷Li)

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li New experiment in progress at LUNA

Lanzhou Experiment ⁶Li(p,γ)⁷Be

Possible resonant enhancement near the threshold

A=7 systems (⁷Be and ⁷Li)

Tritium breeding ⁶Li(n,³H)⁴He Fusion energy generation (ITER)

Low-energy QCD

Low-energy QCD

Chiral interactions

Chiral interactions

NN N³LO Entem, Machleidt

Several choices of two- and threenucleon forces

Due to the high computational effort of dealing with a three-body projectile, we only used the NN interaction

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances

No-core shell model with RGM

- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations

Unified approach to bound & continuum states; to nuclear structure and reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations
- Most efficient: *ab initio* no-core shell model with continuum (NCSMC)

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

 $\langle \boldsymbol{\lambda} \rangle + \sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \left| \begin{array}{c} \boldsymbol{\beta} & \boldsymbol{\beta} \\ \boldsymbol{\beta} & \boldsymbol{\beta}$ $\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \Big|$ Unknowns

NCSMC

Phase shift

Stage I

The projectile nucleus is moving with a constant momentum against the target nucleus initially at rest. The projectile can be described as a plane wave

 $e^{i m{k} \cdot m{r}}$

Stage II

During the interaction process the two nuclei form a composite system and the wave function of the projectile starts to oscillate at a different frequency

Stage III

The projectile nucleus can be still described as plane wave, but with a different phase with respect the initial one. The difference δ is called "phase shift"

Phase shift

Exp.	$J^{\pi} = 3/2^{-1}$
E [MeV]	-37.60

³ He + ⁴ He	J ^π = 3/2⁻	J ^π = 1/2⁻
E _{bound}	-1.519	-1.256
E [MeV]	-36.98	-36.71

p + ⁶ Li	J ^π = 3/2⁻	J ^π = 1/2⁻
Ebound	-5.729	-5.389
E [MeV]	-36.47	-36.13

⁷Be system – New predicted states

⁷Li system ¹⁵⁰ ¹²⁰ 90 Analyzed mass ⁶⁰ 30 partitions ⁰

- ⁶He + p
- ⁶Li + n
- ³H + ⁴He

⁷Li system – New predicted states

⁷Li system – New predicted states

Summary & Outlook

- Reproduction of the experimental spectrum of ⁷Be and ⁷Li
- Predictions for possible new resonant states (π =+,-)
- No new resonance found close to the ⁶Li + p threshold
- Possible S-wave found above the ⁶He + p threshold

- Coupling between different mass partitions
- Inclusion of 3N forces