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Goal: 
Understand (fundamentally) how quantum 

information is transmitted through free space
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Why send quantum information? 
• Crucial for quantum computing/communication/cryptography
• Eg: can establish entanglement between sender/receiver

(important for quantum key distribution)

Why through free space?
• Greater distances than with optical fibres (1000+ km)
• Develop “global quantum internet” [Kimble 2008]

• Probe gravitational-quantum interactions [Rideout et al. 2012]



Communication via relativistic quantum fields

x

t

Field



Communication via relativistic quantum fields

x

t

1. Alice encodes message in field

A

Field



Communication via relativistic quantum fields

x

t

1. Alice encodes message in field
2. Information propagates

A

Field



Communication via relativistic quantum fields

x

t

1. Alice encodes message in field
2. Information propagates
3. Bob recovers message

A

Field

B



Communication via relativistic quantum fields

x

t

1. Alice encodes message in field
2. Information propagates
3. Bob recovers message

A

Field

B

How do we model this?



Unruh-DeWitt model
• Model of light-matter interaction:

• Light: massless scalar field

• Matter (Alice and Bob): 2-level quantum systems (qubits)

• Interactions: Linear coupling, e.g.

𝐻𝐼 𝑡 = 𝜆 𝜒 𝑡 𝜎𝑥 ⊗∫𝑑𝑑𝑥 𝐹 𝑥 𝜙(𝑥, 𝑡)

𝜙 𝑥, 𝑡 = න
𝑑𝑑𝑘

2𝜋 𝑑2 𝑘
𝑎𝑘𝑒

−𝑖 𝑘 𝑡−𝑘⋅𝑥 + ℎ. 𝑐.
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• Matter (Alice and Bob): 2-level quantum systems (qubits)

• Interactions: Linear coupling, e.g.

𝐻𝐼 𝑡 = 𝜆 𝜒 𝑡 𝜎𝑥 ⊗∫𝑑𝑑𝑥 𝐹 𝑥 𝜙(𝑥, 𝑡)

• Realistic model of atom-EM field interaction [Martín-Martínez 2013]

• Used to study Unruh/Hawking effects, probe spacetime entanglement 
structure, etc.

𝜙 𝑥, 𝑡 = න
𝑑𝑑𝑘
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Classical communication protocol

Alice wants to send classical bit (0 or 1) to Bob through the field:

1. Alice encodes message in the field:
• “1” by coupling 
• “0” by not coupling

2. Bob couples to field and measures qubit. He decodes:
• “1” if he measures 𝑒
• “0” if he measures 𝑔

Does this extremely simple protocol work??
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Does classical communication protocol work?
• If Bob is on Alice’s light cone: YES
• If Bob is outside light cone: NO
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• What if Bob is inside light cone?
• In (3+1)D flat space: NO (strong Huygens principle)
• In (2+1)D flat space (and most other spacetimes): YES [Jonsson et al. 2015, P.S. et al. 2017]
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What about constructing a quantum channel?



Constructing a quantum channel
A (input)

𝑈𝐴
𝑈𝐵 output

𝜙

B

|0⟩

|𝑔⟩

• Want a channel of the form:



Constructing a quantum channel

• Quantify efficiency using quantum channel capacity

A (input)
𝑈𝐴

𝑈𝐵 output

𝜙

B

|0⟩

|𝑔⟩

• Want a channel of the form:



Constructing a quantum channel

• Quantify efficiency using quantum channel capacity
• Sending quantum information ⇒ sending entanglement

E

A

𝜙

B

1

2
(|𝑔𝑔⟩ + |𝑒𝑒⟩)

|0⟩

|𝑔⟩

𝑈𝐴
𝑈𝐵

Should be
entangled

A (input)
𝑈𝐴

𝑈𝐵 output

𝜙

B

|0⟩

|𝑔⟩

• Want a channel of the form:



Constructing a quantum channel

• Quantify efficiency using quantum channel capacity
• Sending quantum information ⇒ sending entanglement

Quantum channel capacity Q ≥ 𝑆 𝜌𝐵 − 𝑆 𝜌𝐸𝐵

E

A

𝜙

B

1

2
(|𝑔𝑔⟩ + |𝑒𝑒⟩)

|0⟩

|𝑔⟩

𝑈𝐴
𝑈𝐵

Should be
entangled

A (input)
𝑈𝐴

𝑈𝐵 output

𝜙

B

|0⟩

|𝑔⟩

• Want a channel of the form:



Constructing a quantum channel

• Quantify efficiency using quantum channel capacity
• Sending quantum information ⇒ sending entanglement
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Constructing a quantum channel

• What are 𝑈𝐴 and 𝑈𝐵?
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• What are 𝑈𝐴 and 𝑈𝐵? Recall:

𝑈𝜈 = 𝑇𝑒𝑥𝑝 −𝑖 ∫ 𝑑𝑡 𝐻𝐼 𝑡

𝐻𝐼 𝑡 = 𝜆 𝜒 𝑡 𝜎(𝑡) ⊗Φ(𝑡)

• For general 𝜒 𝑡 must work perturbatively in small 𝜆

• If 𝜒 𝑡 = σ𝑖 𝛿 𝑡 − 𝑡𝑖 time ordering is trivial ⇒ Can work non-perturbatively!
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• Unitaries become:

𝑈𝐴 = exp 𝑖 𝜎𝐴 ⊗Φ𝐴

𝑈𝐵 = exp 𝑖 𝜎𝐵 ⊗Φ𝐵

• However: 𝑈 = 𝑒𝑖𝑋⊗𝑌 are entanglement-breaking [P.S.—Jonsson—Martín-Martínez 2018] 

• Need more complicated couplings to transmit quantum information 
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Constructing a quantum channel

Inspiration: if 𝜙 were a qubit

A

𝜙

B

SWAP
SWAP−1

When 𝜙 is a field, we can’t SWAP A and 𝜙. Instead:

A

𝜙

B

ENCODE
ENCODE−1

Perfect quantum 
channel

Perfect quantum 
channel
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We constructed perfect quantum channel. Problem solved! Not really…
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𝜙
exp(𝑖𝜎𝑥𝜙𝐴) exp(𝑖𝜎𝑧𝜋𝐴)≈

field observables at 𝑡 = 𝑡𝐴
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Where should Bob be in 3+1D?  
Location of Alice at 𝑡 = 𝑡𝐴 Location of Bob at 𝑡 = 𝑡𝐴 + 10

Quantum information propagates on light-cone (strong Huygens principle).

Alice

Bob
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Where should Bob be in 2+1D?  

Location of Alice at 𝑡 = 𝑡𝐴 Location of Bob at 𝑡 = 𝑡𝐴 + 10



Where should Bob be in 2+1D?  

Location of Alice at 𝑡 = 𝑡𝐴 Location of Bob at 𝑡 = 𝑡𝐴 + 10

Quantum information leaks inside light-cone (strong Huygens violation).
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Quantum information broadcasting?

• No cloning theorem: quantum state cannot be cloned.
• Can Alice broadcast a small amount of quantum info to multiple Bobs?
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Quantum information broadcasting?

Cannot broadcast message to both Bobs simultaneously
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Conclusions

• Constructed quantum channel from Alice to Bob via quantum field

• Quantum information can travel slower than light via massless field 
(violation of strong Huygens principle)

• Cannot broadcast quantum information to disjoint receivers
(no-cloning theorem)

THANK YOU!


