Sending quantum information through a quantum field

Petar Simidzija

and

Aida Ahmadzadegan, Achim Kempf, Eduardo Martín-Martínez

Goal:

Understand (fundamentally) how quantum information is transmitted through free space

Why send quantum information?

Why send quantum information?

- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

Why send quantum information?

- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

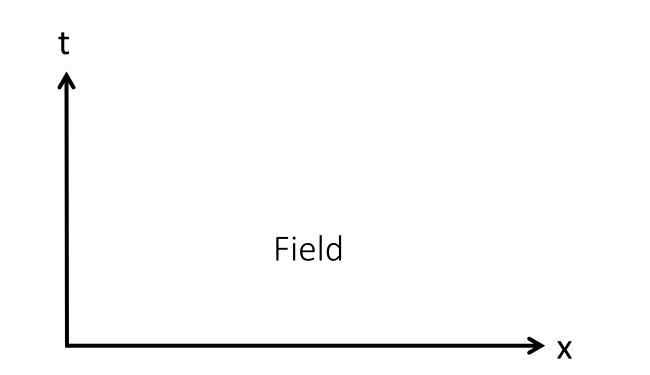
Why through free space?

Why send quantum information?

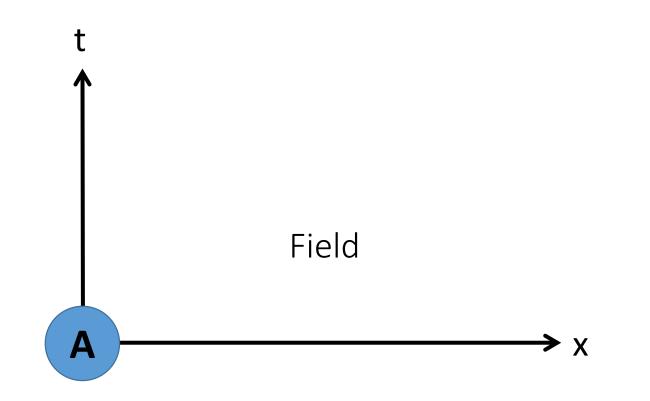
- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

Why through free space?

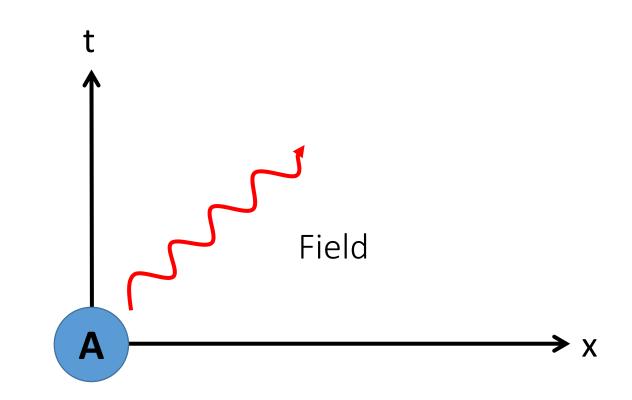
- Greater distances than with optical fibres (1000+ km)
- Develop "global quantum internet" [Kimble 2008]
- Probe gravitational-quantum interactions [Rideout et al. 2012]



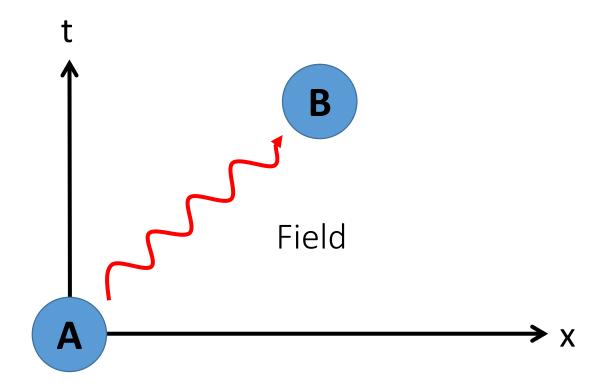
1. Alice encodes message in field



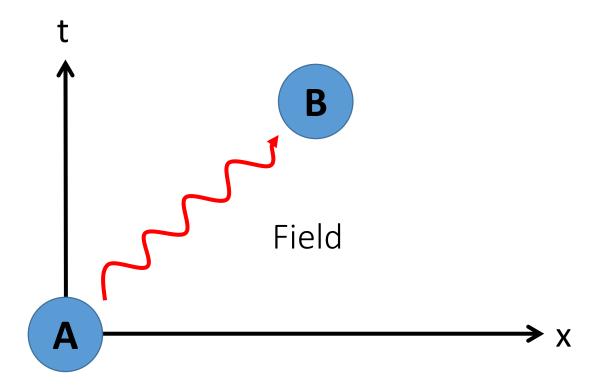
- 1. Alice encodes message in field
- 2. Information propagates



- 1. Alice encodes message in field
- 2. Information propagates
- 3. Bob recovers message



- 1. Alice encodes message in field
- 2. Information propagates
- 3. Bob recovers message



How do we model this?

Unruh-DeWitt model

• Model of light-matter interaction:

• Light: massless scalar field
$$\phi(x,t) = \int \frac{d^d k}{\sqrt{(2\pi)^d 2|k|}} (a_k e^{-i(|k|t-k\cdot x)} + h.c.)$$

- Matter (Alice and Bob): 2-level quantum systems (qubits)
- Interactions: Linear coupling, e.g.

$$H_I(t) = \lambda \, \chi(t) \sigma_x \otimes \int d^d x \, F(x) \phi(x,t)$$

Unruh-DeWitt model

• Model of light-matter interaction:

• Light: massless scalar field
$$\phi(x,t) = \int \frac{d^d k}{\sqrt{(2\pi)^d 2|k|}} (a_k e^{-i(|k|t-k\cdot x)} + h.c.)$$

- Matter (Alice and Bob): 2-level quantum systems (qubits)
- Interactions: Linear coupling, e.g.

$$H_I(t) = \lambda \, \chi(t) \sigma_x \otimes \int d^d x \, F(x) \phi(x,t)$$

- Realistic model of atom-EM field interaction [Martín-Martínez 2013]
- Used to study Unruh/Hawking effects, probe spacetime entanglement structure, etc.

Goal:

Use UDW model to study quantum communication via quantum field

Goal:

Use UDW model to study quantum communication via quantum field

But first:

Classical communication via quantum field

Alice wants to send *classical* bit (0 or 1) to Bob through the field:

Alice wants to send *classical* bit (0 or 1) to Bob through the field:

- 1. Alice **encodes** message in the field:
 - "1" by coupling
 - "0" by not coupling

Alice wants to send *classical* bit (0 or 1) to Bob through the field:

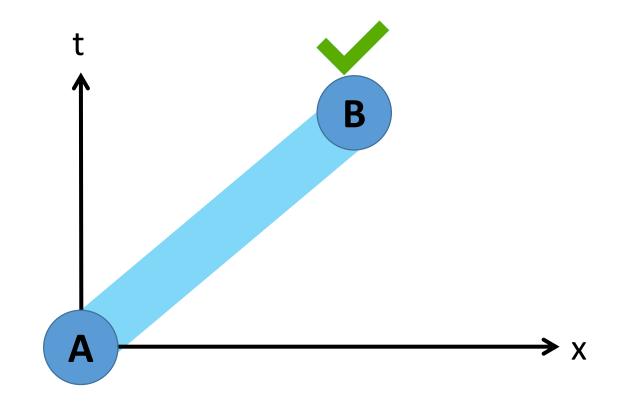
- 1. Alice **encodes** message in the field:
 - "1" by coupling
 - "0" by not coupling
- 2. Bob couples to field and measures qubit. He **decodes**:
 - "1" if he measures $|e\rangle$
 - "0" if he measures $|g\rangle$

Alice wants to send *classical* bit (0 or 1) to Bob through the field:

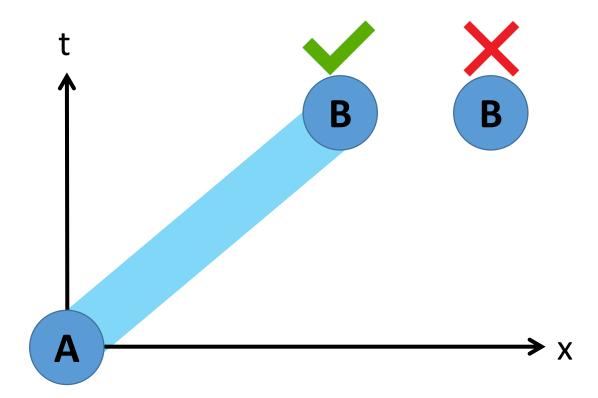
- 1. Alice **encodes** message in the field:
 - "1" by coupling
 - "0" by not coupling
- 2. Bob couples to field and measures qubit. He **decodes**:
 - "1" if he measures $|e\rangle$
 - "0" if he measures $|g\rangle$

Does this *extremely simple* protocol work??

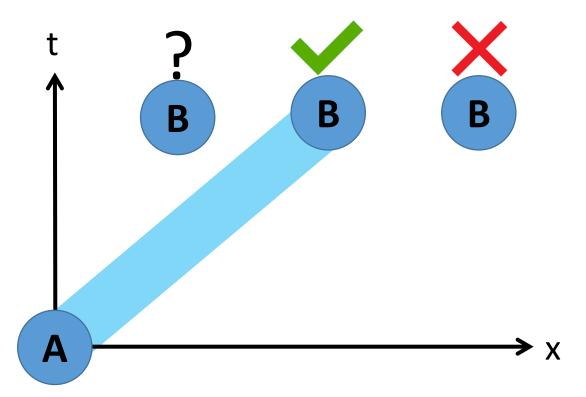
• If Bob is on Alice's light cone: YES



- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO

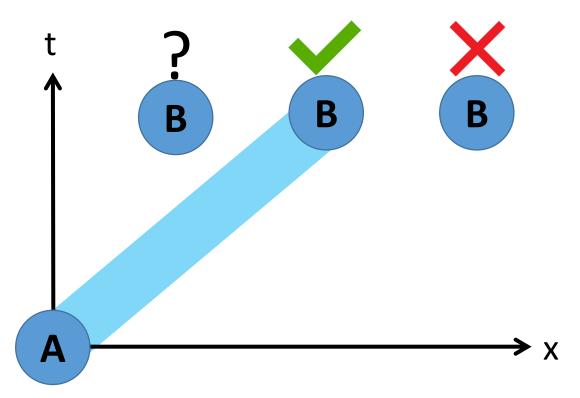


- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO



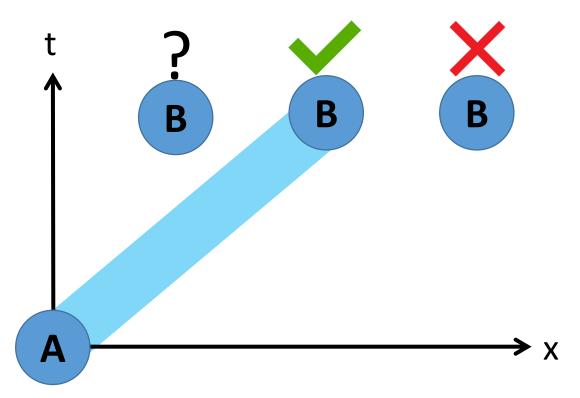
• What if Bob is inside light cone?

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO



- What if Bob is inside light cone?
 - In (3+1)D flat space: NO (strong Huygens principle)

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO



- What if Bob is inside light cone?
 - In (3+1)D flat space: NO (strong Huygens principle)
 - In (2+1)D flat space (and most other spacetimes): YES [Jonsson et al. 2015, P.S. et al. 2017]

Main message:

Constructing a classical channel via a quantum field is <u>easy</u>!

Main message:

Constructing a classical channel via a quantum field is <u>easy</u>!

What about constructing a *quantum* channel?

• Want a channel of the form:

A (input)
$$U_A = U_A = U_B$$

B $|g\rangle$ output

• Want a channel of the form:

A (input)
$$-U_A - U_B - U_B$$

B $|g\rangle$ output

• Quantify efficiency using quantum channel capacity

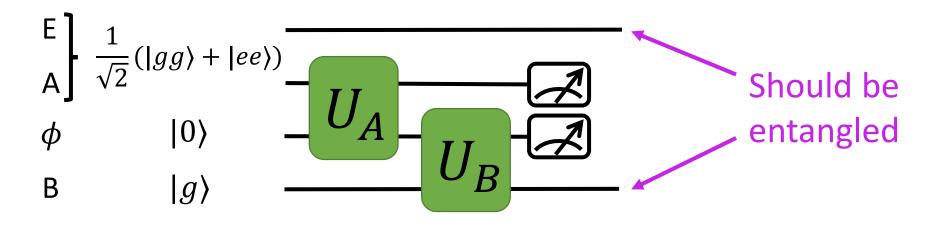
• Want a channel of the form:

A (input)

$$\phi |0\rangle$$

 U_A
 U_B
 U_B
 U_B
 U_B

- Quantify efficiency using quantum channel capacity
- Sending quantum information ⇒ sending entanglement

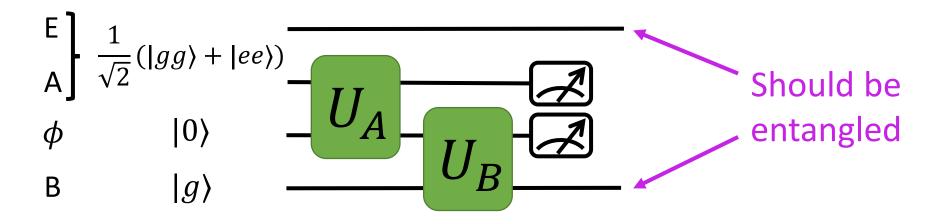


• Want a channel of the form:

A (input)
$$U_A = U_A = U_B$$

B $|g\rangle$ output

- Quantify efficiency using quantum channel capacity
- Sending quantum information ⇒ sending entanglement



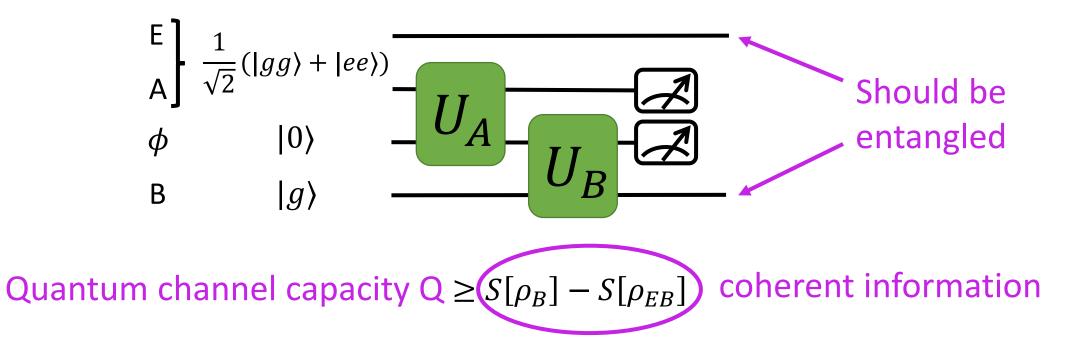
Quantum channel capacity $Q \ge S[\rho_B] - S[\rho_{EB}]$

• Want a channel of the form:

A (input)
$$U_A = U_A = U_B$$

B $|g\rangle$ output

- Quantify efficiency using quantum channel capacity
- Sending quantum information ⇒ sending entanglement



A (input)
$$U_A$$
 U_B $-$ output

• What are U_A and U_B ?

A (input)
$$U_A$$
 U_B $-$ output

• What are U_A and U_B ? Recall:

$$U_{\nu} = Texp[-i \int dt H_{I}(t)]$$
$$H_{I}(t) = \lambda \chi(t)\sigma(t) \otimes \Phi(t)$$

A (input)
$$U_A$$
 U_B $-$ output

• What are U_A and U_B ? Recall:

$$U_{\nu} = Texp[-i \int dt H_{I}(t)]$$
$$H_{I}(t) = \lambda \chi(t)\sigma(t) \otimes \Phi(t)$$

• For general $\chi(t)$ must work perturbatively in small λ

A (input)
$$U_A$$

 $\phi |0\rangle U_A$
B $|g\rangle$ output

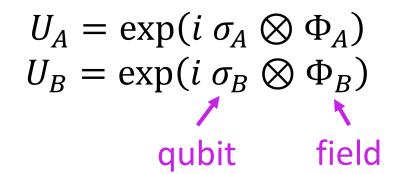
• What are U_A and U_B ? Recall:

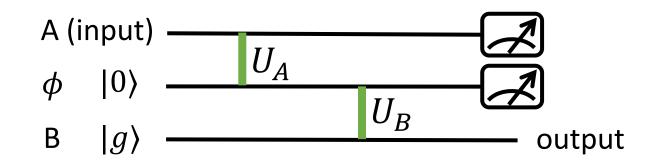
$$U_{\nu} = Texp[-i \int dt H_{I}(t)]$$
$$H_{I}(t) = \lambda \chi(t)\sigma(t) \otimes \Phi(t)$$

• For general $\chi(t)$ must work perturbatively in small λ

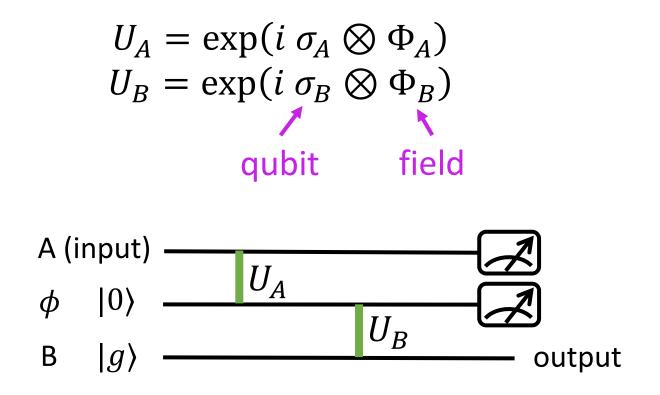
• If $\chi(t) = \sum_i \delta(t - t_i)$ time ordering is trivial \Rightarrow Can work non-perturbatively!

• Unitaries become:



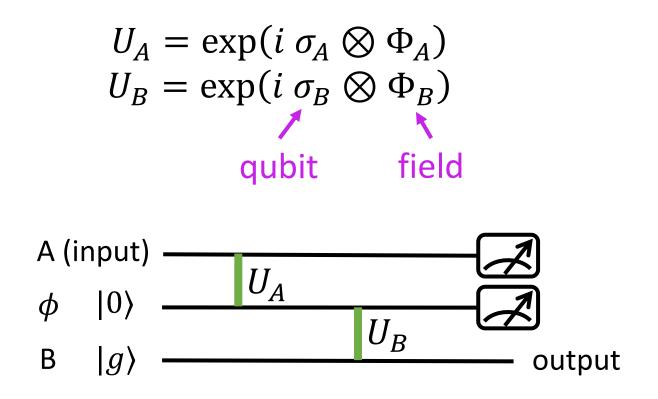


• Unitaries become:



• However: $U = e^{iX \otimes Y}$ are entanglement-breaking [P.S.-Jonsson-Martín-Martínez 2018]

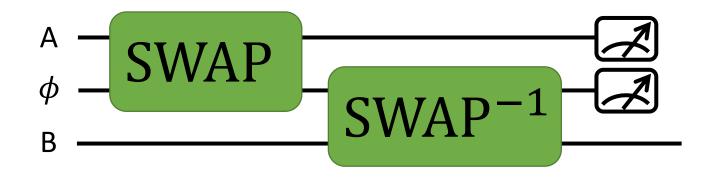
• Unitaries become:



• However: $U = e^{iX \otimes Y}$ are entanglement-breaking [P.S.-Jonsson-Martín-Martínez 2018]

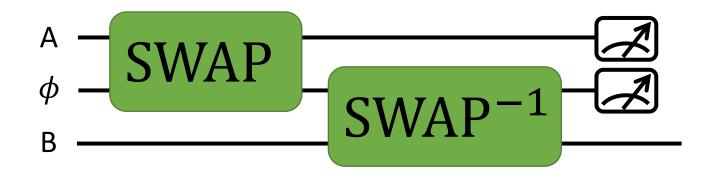
Need more complicated couplings to transmit quantum information

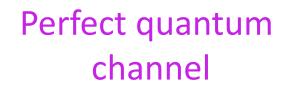
Inspiration: if ϕ were a qubit



Perfect quantum channel

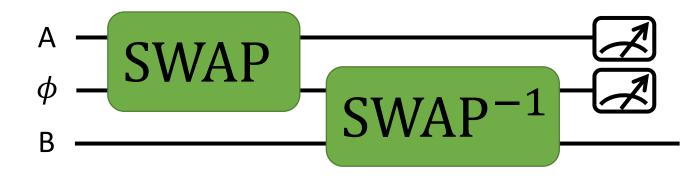
Inspiration: if ϕ were a qubit

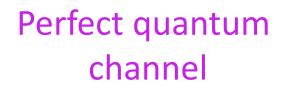




When ϕ is a field, we can't SWAP A and ϕ .

Inspiration: if ϕ were a qubit





channel

When ϕ is a field, we can't SWAP A and ϕ . Instead:

 $\phi_A \coloneqq \lambda_{\phi} \int d^d x F(x) \phi(x, t_A)$ $\pi_A \coloneqq \lambda_{\pi} \int d^d x F(x) \pi(x, t_A)$

 $\phi_A \coloneqq \lambda_{\phi} \int d^d x F(x) \phi(x, t_A)$ $\pi_A \coloneqq \lambda_{\pi} \int d^d x F(x) \pi(x, t_A)$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)$ in the field:

 $\phi_A \coloneqq \lambda_{\phi} \int d^d x F(x) \phi(x, t_A)$ $\pi_A \coloneqq \lambda_{\pi} \int d^d x F(x) \pi(x, t_A)$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)$ in the field: First δ -coupling: $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)|0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle|-\alpha\rangle)$

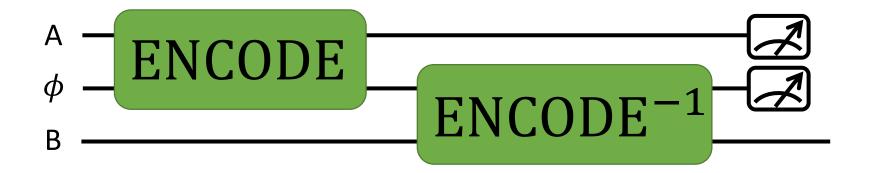
 $\phi_A \coloneqq \lambda_{\phi} \int d^d x F(x) \phi(x, t_A)$ $\pi_A \coloneqq \lambda_{\pi} \int d^d x F(x) \pi(x, t_A)$

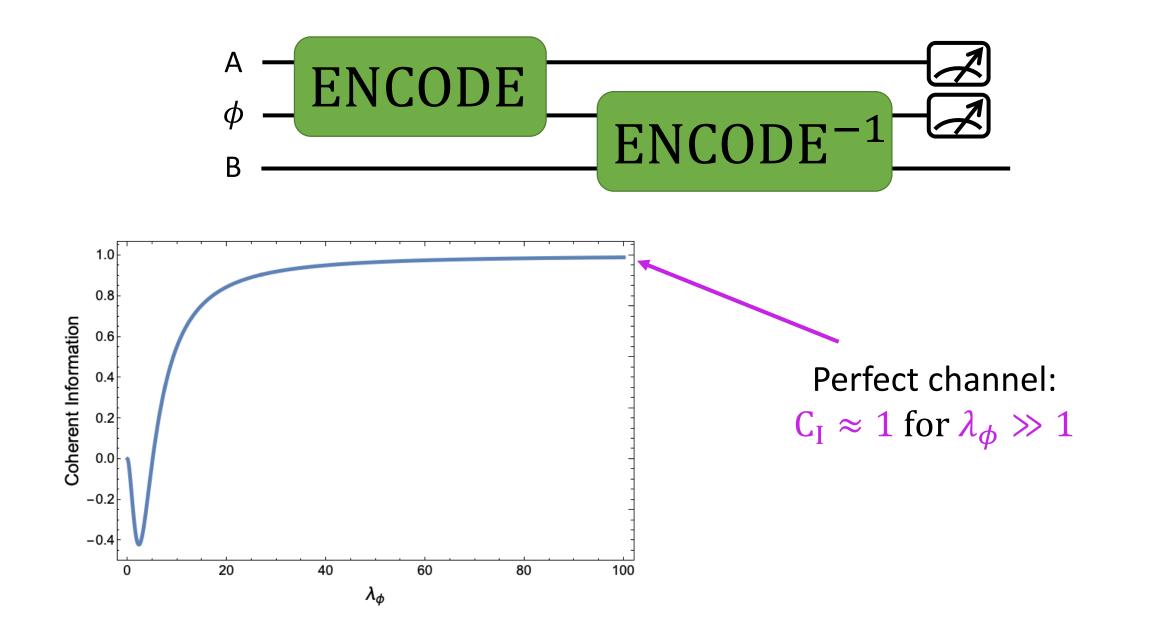
Let's encode $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)$ in the field: First δ -coupling: $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)|_0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle)$ Second δ -coupling: $\frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle) \mapsto \frac{1}{\sqrt{2}}|+_y\rangle(|+\alpha\rangle - i| - \alpha\rangle)$

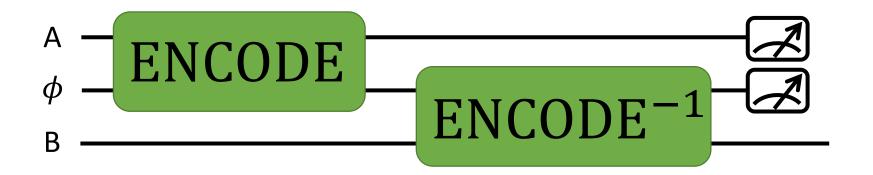
 $\phi_A \coloneqq \lambda_{\phi} \int d^d x F(x) \phi(x, t_A)$ $\pi_A \coloneqq \lambda_{\pi} \int d^d x F(x) \pi(x, t_A)$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)$ in the field: First δ -coupling: $\frac{1}{\sqrt{2}}(|g\rangle + |e\rangle)|_0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle)$ Second δ -coupling: $\frac{1}{\sqrt{2}}(|g\rangle| + \alpha\rangle + |e\rangle| - \alpha\rangle) \mapsto \frac{1}{\sqrt{2}}|+_y\rangle(|+\alpha\rangle - i| - \alpha\rangle)$

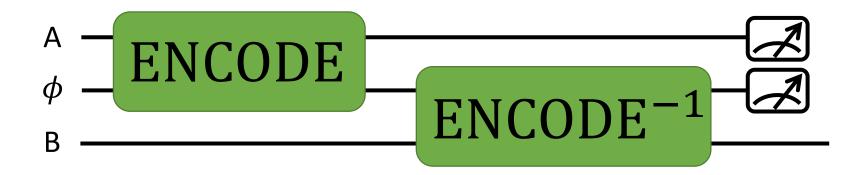
For optimal encoding want $|+\alpha\rangle$ and $|-\alpha\rangle$ to be orthogonal: Need $\lambda_{\phi} \gg 1$



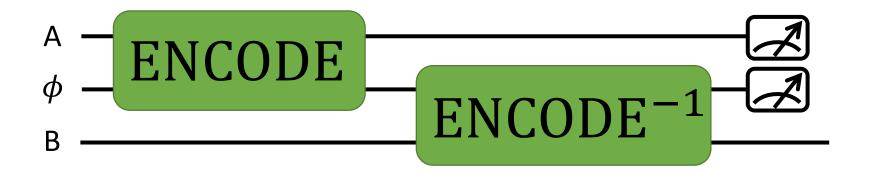




We constructed perfect quantum channel. Problem solved!

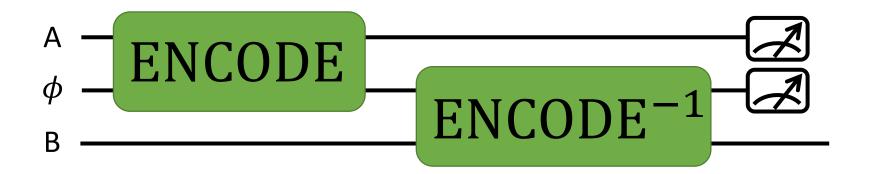


We constructed perfect quantum channel. Problem solved! Not really...

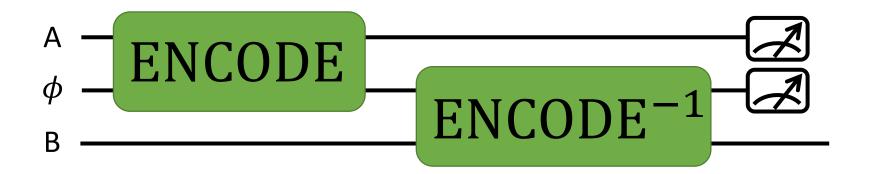


We constructed perfect quantum channel. Problem solved! Not really...

$$\overset{A}{\phi} = \underbrace{\text{ENCODE}}_{\phi} \approx \exp(i\sigma_x \phi_A) \exp(i\sigma_z \pi_A)$$



We constructed perfect quantum channel. Problem solved! Not really...



We constructed perfect quantum channel. Problem solved! Not really...

$$\stackrel{\mathsf{A}}{\phi} = \underbrace{\mathsf{ENCODE}}_{\phi} \approx \exp(i\sigma_x \phi_A) \exp(i\sigma_z \pi_A)$$

$$\stackrel{\mathsf{V}}{\swarrow} \stackrel{\mathsf{V}}{\swarrow} \stackrel{\mathsf{V}}{\checkmark} \stackrel{\mathsf{V}}{\lor} \stackrel{\mathsf$$

Need to construct **ENCODE**⁻¹ with observables at $t = t_B$

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

Claim: For any free field in any spacetime dimension:

$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B)$$

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

Claim: For any free field in any spacetime dimension:

$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B)$$
observable at
$$t_A$$
observables at
$$t_B = t_A + \Delta$$

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

Claim: For any free field in any spacetime dimension:

$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B)$$
observable at
$$t_A$$
observables at
$$t_B = t_A + \Delta$$

 F_1 and F_2 are defined via Fourier transform:

$$\widetilde{F_1}(k) \coloneqq \widetilde{F}(k) \cos(\Delta|k|),$$

$$\widetilde{F_2}(k) \coloneqq \widetilde{F}(k) \operatorname{sinc}(\Delta|k|) (-\Delta),$$

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

Claim: For any free field in any spacetime dimension:

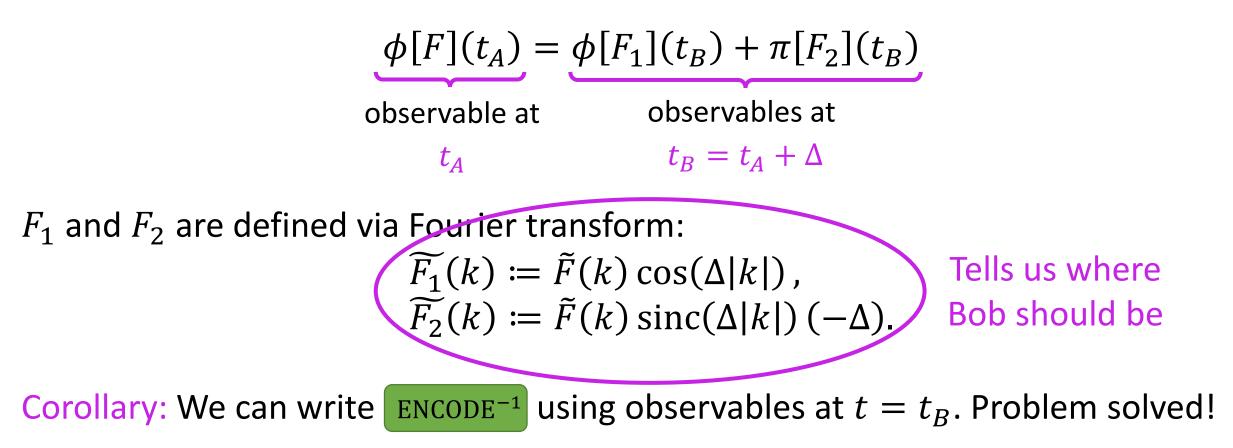
$$\phi[F](t_A) = \phi[F_1](t_B) + \pi[F_2](t_B)$$
observable at
$$t_A$$
observables at
$$t_B = t_A + \Delta$$

 F_1 and F_2 are defined via Fourier transform: $\widetilde{F_1}(k) \coloneqq \widetilde{F}(k) \cos(\Delta|k|),$ $\widetilde{F_2}(k) \coloneqq \widetilde{F}(k) \operatorname{sinc}(\Delta|k|) (-\Delta).$

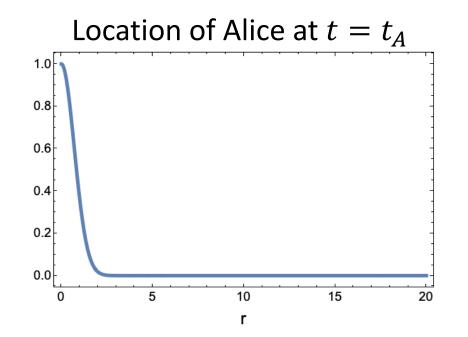
Corollary: We can write ENCODE⁻¹ using observables at $t = t_B$. Problem solved!

Definition (smeared field operator): $\phi[F](t) \coloneqq \int d^d x F(x)\phi(x,t)$

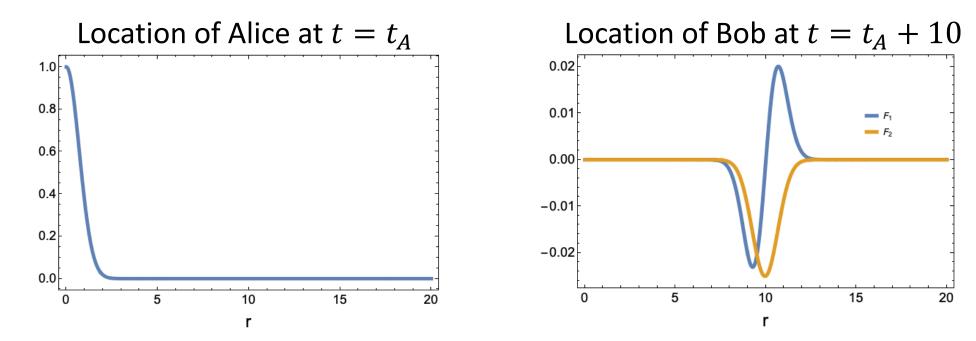
Claim: For any free field in any spacetime dimension:



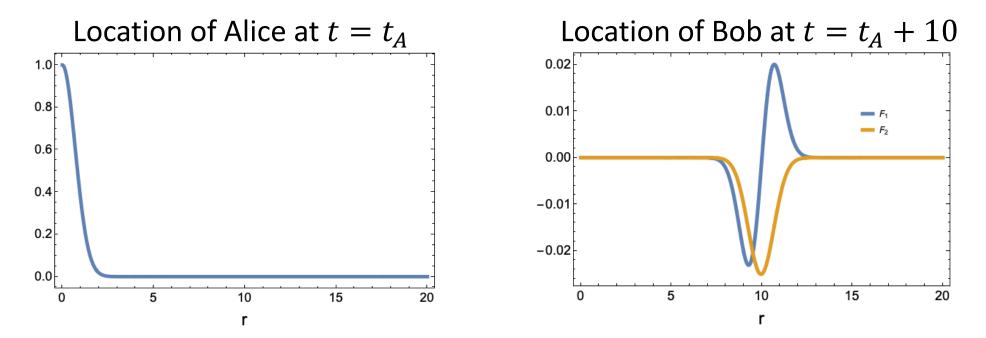
Where should Bob be in 3+1D?



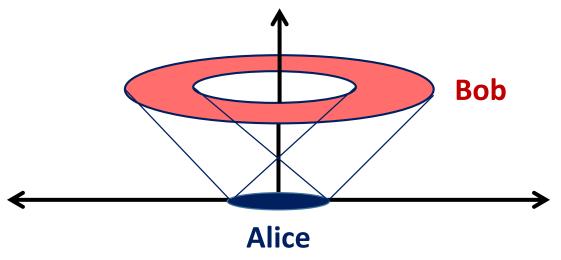
Where should Bob be in 3+1D?



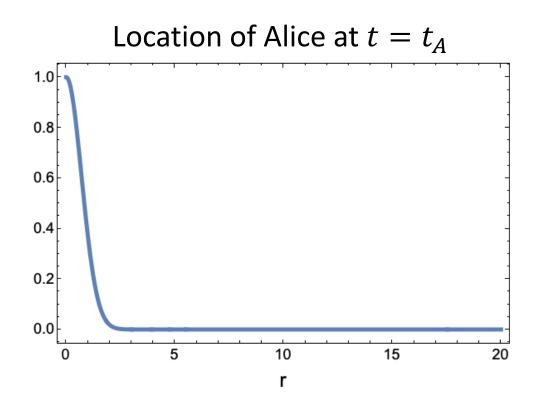
Where should Bob be in 3+1D?



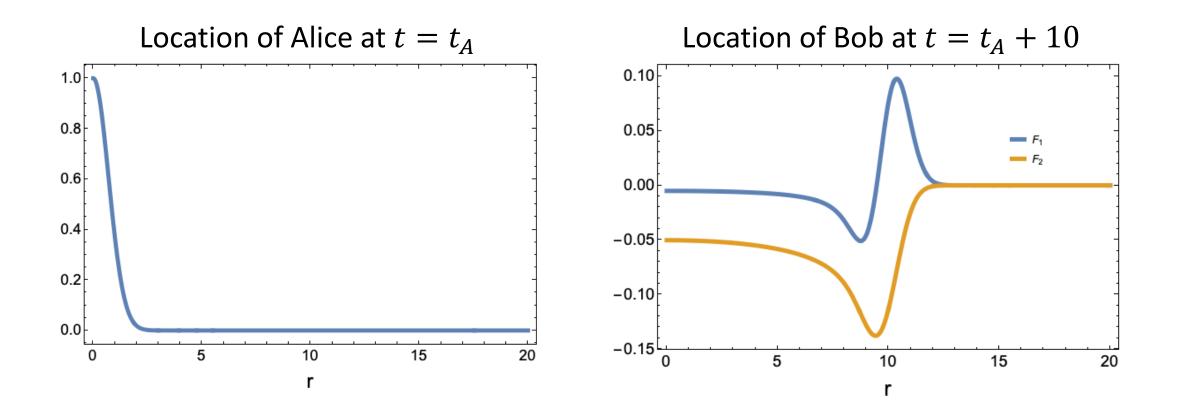
Quantum information propagates on light-cone (strong Huygens principle).



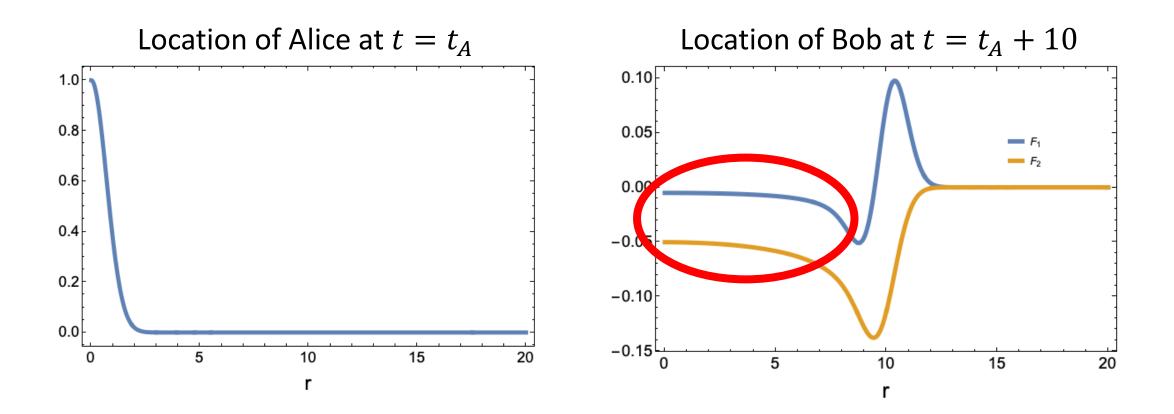
Where should Bob be in 2+1D?



Where should Bob be in 2+1D?



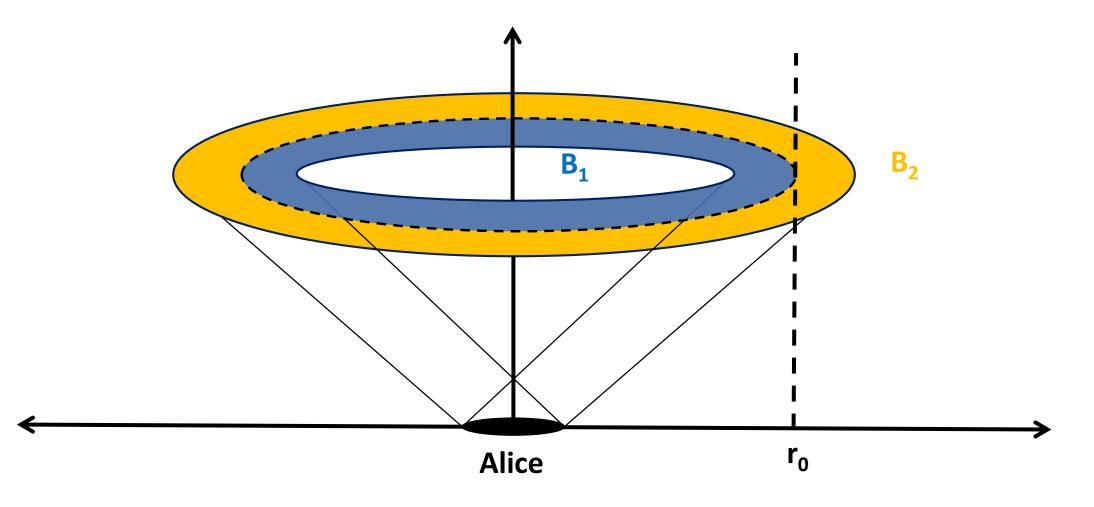
Where should Bob be in 2+1D?

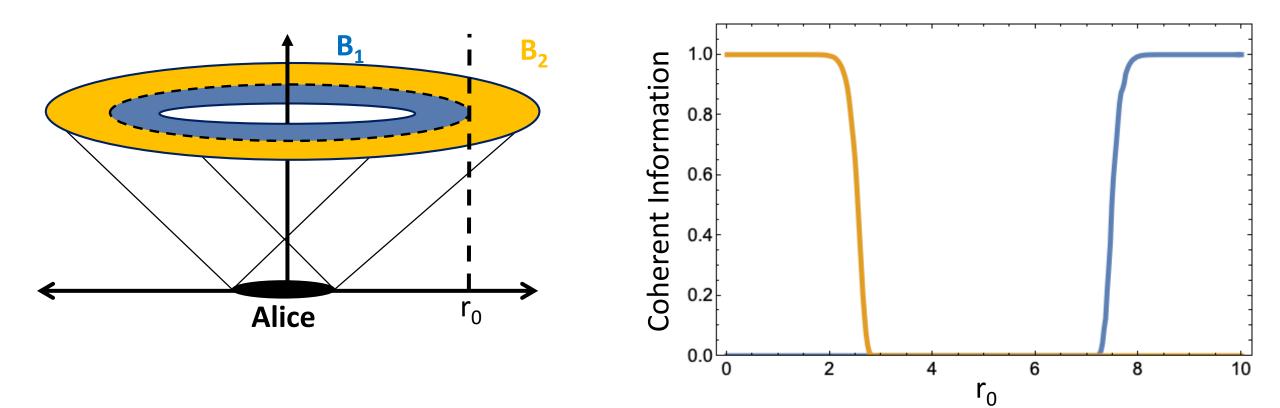


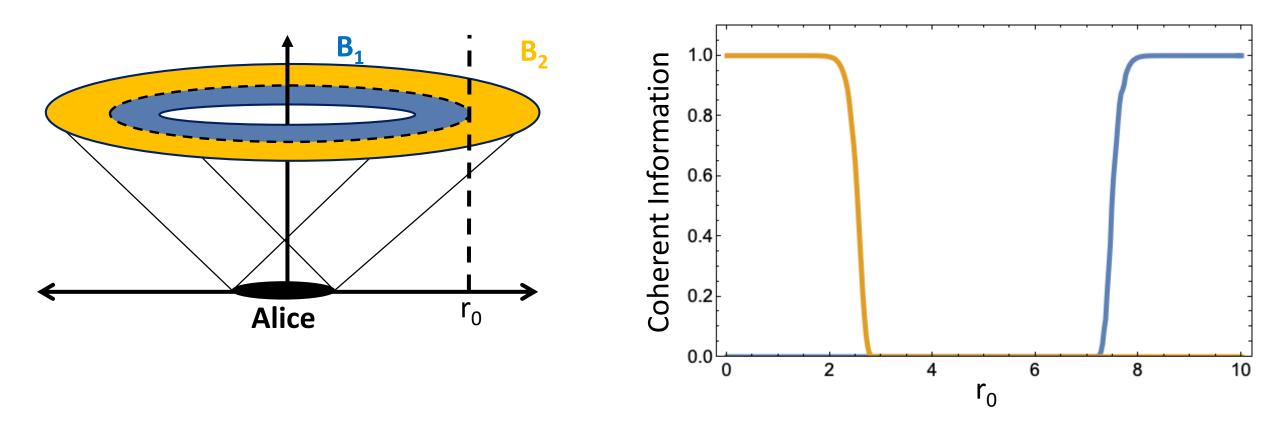
Quantum information leaks inside light-cone (strong Huygens violation).

• No cloning theorem: quantum state cannot be cloned.

- No cloning theorem: quantum state cannot be cloned.
- Can Alice broadcast a *small* amount of quantum info to multiple Bobs?







<u>Cannot</u> broadcast message to both Bobs simultaneously

• Constructed quantum channel from Alice to Bob via quantum field

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)
- Cannot broadcast quantum information to disjoint receivers (no-cloning theorem)

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)
- Cannot broadcast quantum information to disjoint receivers (no-cloning theorem)

THANK YOU!