Sending quantum information through a quantum field

Petar Simidzija
and

Aida Ahmadzadegan, Achim Kempf, Eduardo Martín-Martínez

Goal:

> Understand (fundamentally) how quantum information is transmitted through free space

Why send quantum information through free space?

Why send quantum information through free space?

Why send quantum information?

Why send quantum information through free space?

Why send quantum information?

- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

Why send quantum information through free space?

Why send quantum information?

- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

Why through free space?

Why send quantum information through free space?

Why send quantum information?

- Crucial for quantum computing/communication/cryptography
- Eg: can establish entanglement between sender/receiver (important for quantum key distribution)

Why through free space?

- Greater distances than with optical fibres ($1000+\mathrm{km}$)
- Develop "global quantum internet" [kimble 2008]
- Probe gravitational-quantum interactions [Rideout etal 2012]

Communication via relativistic quantum fields

Field

Communication via relativistic quantum fields

1. Alice encodes message in field

Field

Communication via relativistic quantum fields

1. Alice encodes message in field
2. Information propagates

Communication via relativistic quantum fields

1. Alice encodes message in field
2. Information propagates
3. Bob recovers message

Communication via relativistic quantum fields

1. Alice encodes message in field
2. Information propagates
3. Bob recovers message

How do we model this?

Unruh-DeWitt model

- Model of light-matter interaction:
- Light: massless scalar field $\phi(x, t)=\int \frac{d^{d} k}{\sqrt{(2 \pi)^{d} 2|k|}}\left(a_{k} e^{-i(|k| t-k \cdot x)}+h . c\right.$. $)$
- Matter (Alice and Bob): 2-level quantum systems (qubits)
- Interactions: Linear coupling, e.g.

$$
H_{I}(t)=\lambda \chi(t) \sigma_{x} \otimes \int d^{d} x F(x) \phi(x, t)
$$

Unruh-DeWitt model

- Model of light-matter interaction:
- Light: massless scalar field $\phi(x, t)=\int \frac{d^{d} k}{\sqrt{(2 \pi)^{d} 2|k|}}\left(a_{k} e^{-i(|k| t-k \cdot x)}+\right.$ h.c. $)$
- Matter (Alice and Bob): 2-level quantum systems (qubits)
- Interactions: Linear coupling, e.g.

$$
H_{I}(t)=\lambda \chi(t) \sigma_{x} \otimes \int d^{d} x F(x) \phi(x, t)
$$

- Realistic model of atom-EM field interaction [Martin-Martinez 2013]
- Used to study Unruh/Hawking effects, probe spacetime entanglement structure, etc.

Goal:
 Use UDW model to study quantum communication via quantum field

Goal:
 Use UDW model to study
 quantum communication via quantum field

But first:

Classical communication via quantum field

Classical communication protocol

Alice wants to send classical bit (0 or 1) to Bob through the field:

Classical communication protocol

Alice wants to send classical bit (0 or 1) to Bob through the field:

1. Alice encodes message in the field:

- " 1 " by coupling
- " 0 " by not coupling

Classical communication protocol

Alice wants to send classical bit (0 or 1) to Bob through the field:

1. Alice encodes message in the field:

- " 1 " by coupling
- " 0 " by not coupling

2. Bob couples to field and measures qubit. He decodes:

- " 1 " if he measures $|e\rangle$
- " 0 " if he measures $|g\rangle$

Classical communication protocol

Alice wants to send classical bit (0 or 1) to Bob through the field:

1. Alice encodes message in the field:

- " 1 " by coupling
- " 0 " by not coupling

2. Bob couples to field and measures qubit. He decodes:

- " 1 " if he measures $|e\rangle$
- " 0 " if he measures $|g\rangle$

Does this extremely simple protocol work??

Does classical communication protocol work?

- If Bob is on Alice's light cone: YES

Does classical communication protocol work?

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO

Does classical communication protocol work?

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO

- What if Bob is inside light cone?

Does classical communication protocol work?

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO

- What if Bob is inside light cone?
- In (3+1)D flat space: NO (strong Huygens principle)

Does classical communication protocol work?

- If Bob is on Alice's light cone: YES
- If Bob is outside light cone: NO

- What if Bob is inside light cone?
- In (3+1)D flat space: NO (strong Huygens principle)
- In (2+1)D flat space (and most other spacetimes): YES [Jonsson etal. 2015, p.s. et ol. 2017]

Main message:

Constructing a classical channel via a quantum field is easy!

Main message:
Constructing a classical channel via a quantum field is easy!

What about constructing a quantum channel?

Constructing a quantum channel

- Want a channel of the form:

Constructing a quantum channel

- Want a channel of the form:

- Quantify efficiency using quantum channel capacity

Constructing a quantum channel

- Want a channel of the form:

- Quantify efficiency using quantum channel capacity
- Sending quantum information \Rightarrow sending entanglement

Constructing a quantum channel

- Want a channel of the form:

- Quantify efficiency using quantum channel capacity
- Sending quantum information \Rightarrow sending entanglement

Quantum channel capacity $\mathrm{Q} \geq S\left[\rho_{B}\right]-S\left[\rho_{E B}\right]$

Constructing a quantum channel

- Want a channel of the form:

- Quantify efficiency using quantum channel capacity
- Sending quantum information \Rightarrow sending entanglement

Quantum channel capacity $\mathrm{Q} \geq S\left[\rho_{B}\right]-S\left[\rho_{E B}\right]$ coherent information

Constructing a quantum channel

- What are U_{A} and U_{B} ?

Constructing a quantum channel

- What are U_{A} and U_{B} ? Recall:

$$
\begin{gathered}
U_{v}=\operatorname{Texp}\left[-i \int d t H_{I}(t)\right] \\
H_{I}(t)=\lambda \chi(t) \sigma(t) \otimes \Phi \Phi(t)
\end{gathered}
$$

Constructing a quantum channel

- What are U_{A} and U_{B} ? Recall:

$$
\begin{gathered}
U_{v}=\operatorname{Texp}\left[-i \int d t H_{I}(t)\right] \\
H_{I}(t)=\lambda \chi(t) \sigma(t) \otimes \Phi \Phi(t)
\end{gathered}
$$

- For general $\chi(t)$ must work perturbatively in small λ

Constructing a quantum channel

- What are U_{A} and U_{B} ? Recall:

$$
\begin{gathered}
U_{v}=\operatorname{Texp}\left[-i \int d t H_{I}(t)\right] \\
H_{I}(t)=\lambda \chi(t) \sigma(t) \otimes \Phi \Phi(t)
\end{gathered}
$$

- For general $\chi(t)$ must work perturbatively in small λ
- If $\chi(t)=\sum_{i} \delta\left(t-t_{i}\right)$ time ordering is trivial \Rightarrow Can work non-perturbatively!

Simplest coupling: $\chi(t)=\delta\left(t-t_{i}\right)$

Simplest coupling: $\chi(t)=\delta\left(t-t_{i}\right)$

- Unitaries become:

$$
\begin{gathered}
U_{A}=\exp \left(i \sigma_{A} \otimes \Phi_{A}\right) \\
U_{B}=\exp \left(i \sigma_{B} \otimes \Phi_{B}\right) \\
\text { qubit }
\end{gathered}
$$

Simplest coupling: $\chi(t)=\delta\left(t-t_{i}\right)$

- Unitaries become:

$$
\begin{gathered}
U_{A}=\exp \left(i \sigma_{A} \otimes \Phi_{A}\right) \\
U_{B}=\exp \left(i \sigma_{B} \otimes \Phi_{B}\right) \\
\text { qubit }
\end{gathered}
$$

- However: $U=e^{i X \otimes Y}$ are entanglement-breaking [P.S.-Jonsson-Martin-Martínez 2018]

Simplest coupling: $\chi(t)=\delta\left(t-t_{i}\right)$

- Unitaries become:

$$
\begin{gathered}
U_{A}=\exp \left(i \sigma_{A} \otimes \Phi_{A}\right) \\
U_{B}=\exp \left(i \sigma_{B} \otimes \Phi_{B}\right) \\
\text { qubit }
\end{gathered}
$$

- However: $U=e^{i X \otimes Y}$ are entanglement-breaking [P.S.-Jonsson-Martin-Martinez 2018]
- Need more complicated couplings to transmit quantum information

Constructing a quantum channel

Inspiration: if ϕ were a qubit

Perfect quantum channel

Constructing a quantum channel

Inspiration: if ϕ were a qubit

Perfect quantum channel

When ϕ is a field, we can't SWAP A and ϕ.

Constructing a quantum channel

Inspiration: if ϕ were a qubit

Perfect quantum channel

When ϕ is a field, we can't SWAP A and ϕ. Instead:

Encoding a qubit in a field

Encoding a qubit in a field

$\mathrm{A}-\mathrm{ENCODE} \approx \exp \left(i \sigma_{x} \phi_{A}\right) \exp \left(i \sigma_{z} \pi_{A}\right)$
 (2δ-couplings)

$$
\begin{aligned}
& \phi_{A}:=\lambda_{\phi} \int d^{d} x F(x) \phi\left(x, t_{A}\right) \\
& \pi_{A}:=\lambda_{\pi} \int d^{d} x F(x) \pi\left(x, t_{A}\right)
\end{aligned}
$$

Encoding a qubit in a field

$$
\begin{gathered}
\mathrm{A}-\mathrm{ENCODE} \approx \underset{(2 \delta \text {-couplings) }}{\exp \left(i \sigma_{x} \phi_{A}\right) \exp \left(i \sigma_{z} \pi_{A}\right)} \\
\phi_{A}:=\lambda_{\phi} \int d^{d} x F(x) \phi\left(x, t_{A}\right) \\
\pi_{A}:=\lambda_{\pi} \int d^{d} x F(x) \pi\left(x, t_{A}\right)
\end{gathered}
$$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$ in the field:

Encoding a qubit in a field

$$
\begin{gathered}
\mathrm{A}-\mathrm{ENCODE} \approx \underset{(2 \delta \text {-couplings) }}{\exp \left(i \sigma_{x} \phi_{A}\right) \exp \left(i \sigma_{z} \pi_{A}\right)} \\
\phi_{A}:=\lambda_{\phi} \int d^{d} x F(x) \phi\left(x, t_{A}\right) \\
\pi_{A}:=\lambda_{\pi} \int d^{d} x F(x) \pi\left(x, t_{A}\right)
\end{gathered}
$$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$ in the field:
First δ-coupling: $\quad \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)|0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle|+\alpha\rangle+|e\rangle|-\alpha\rangle)$

Encoding a qubit in a field

$$
\begin{aligned}
& \text { (} 2 \delta \text {-couplings) } \\
& \phi_{A}:=\lambda_{\phi} \int d^{d} x F(x) \phi\left(x, t_{A}\right) \\
& \pi_{A}:=\lambda_{\pi} \int d^{d} x F(x) \pi\left(x, t_{A}\right)
\end{aligned}
$$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$ in the field:
First δ-coupling: $\quad \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)|0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle|+\alpha\rangle+|e\rangle|-\alpha\rangle)$
Second δ-coupling: $\quad \frac{1}{\sqrt{2}}(|g\rangle|+\alpha\rangle+|e\rangle|-\alpha\rangle) \mapsto \frac{1}{\sqrt{2}}\left|+_{y}\right\rangle(|+\alpha\rangle-i|-\alpha\rangle)$

Encoding a qubit in a field

$$
\begin{gathered}
\mathrm{A}-\mathrm{ENCODE} \approx \approx \underset{(2 \delta \text {-couplings) }}{\exp \left(i \sigma_{x} \phi_{A}\right) \exp \left(i \sigma_{z} \pi_{A}\right)} \\
\phi_{A}:=\lambda_{\phi} \int d^{d} x F(x) \phi\left(x, t_{A}\right) \\
\pi_{A}:=\lambda_{\pi} \int d^{d} x F(x) \pi\left(x, t_{A}\right)
\end{gathered}
$$

Let's encode $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$ in the field:
First δ-coupling: $\quad \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)|0\rangle \mapsto \frac{1}{\sqrt{2}}(|g\rangle|+\alpha\rangle+|e\rangle|-\alpha\rangle)$
Second δ-coupling: $\quad \frac{1}{\sqrt{2}}(|g\rangle|+\alpha\rangle+|e\rangle|-\alpha\rangle) \mapsto \frac{1}{\sqrt{2}}\left|+_{y}\right\rangle(|+\alpha\rangle-i|-\alpha\rangle)$
For optimal encoding want $|+\alpha\rangle$ and $|-\alpha\rangle$ to be orthogonal: Need $\lambda_{\phi} \gg 1$

Constructing a quantum channel

Constructing a quantum channel

Constructing a quantum channel

We constructed perfect quantum channel. Problem solved!

Constructing a quantum channel

We constructed perfect quantum channel. Problem solved! Not really...

Constructing a quantum channel

We constructed perfect quantum channel. Problem solved! Not really...

Constructing a quantum channel

We constructed perfect quantum channel. Problem solved! Not really...

Constructing a quantum channel

We constructed perfect quantum channel. Problem solved! Not really...

Need to construct ENCODE ${ }^{-1}$ with observables at $t=t_{B}$

An algebraic QFT result

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$
Claim: For any free field in any spacetime dimension:

$$
\phi[F]\left(t_{A}\right)=\phi\left[F_{1}\right]\left(t_{B}\right)+\pi\left[F_{2}\right]\left(t_{B}\right)
$$

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$
Claim: For any free field in any spacetime dimension:

$$
\underbrace{\phi[F]\left(t_{A}\right)}_{\begin{array}{c}
\text { observable at } \\
t_{A}
\end{array}}=\underbrace{\phi\left[F_{1}\right]\left(t_{B}\right)+\pi\left[F_{2}\right]\left(t_{B}\right)}_{\begin{array}{c}
\text { observables at } \\
t_{B}=t_{A}+\Delta
\end{array}}
$$

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$
Claim: For any free field in any spacetime dimension:

$$
\underbrace{\phi[F]\left(t_{A}\right)}_{\begin{array}{c}
\text { observable at } \\
t_{A}
\end{array}}=\underbrace{\phi\left[F_{1}\right]\left(t_{B}\right)+\pi\left[F_{2}\right]\left(t_{B}\right)}_{\begin{array}{c}
\text { observables at } \\
t_{B}=t_{A}+\Delta
\end{array}}
$$

F_{1} and F_{2} are defined via Fourier transform:

$$
\begin{aligned}
& \widetilde{F_{1}}(k):=\widetilde{F}(k) \cos (\Delta|k|), \\
& \widetilde{F_{2}}(k):=\widetilde{F}(k) \operatorname{sinc}(\Delta|k|)(-\Delta) .
\end{aligned}
$$

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$
Claim: For any free field in any spacetime dimension:

$$
\underbrace{\phi[F]\left(t_{A}\right)}_{\begin{array}{c}
\text { observable at } \\
t_{A}
\end{array}}=\underbrace{\phi\left[F_{1}\right]\left(t_{B}\right)+\pi\left[F_{2}\right]\left(t_{B}\right)}_{\begin{array}{c}
\text { observables at } \\
t_{B}=t_{A}+\Delta
\end{array}}
$$

F_{1} and F_{2} are defined via Fourier transform:

$$
\begin{aligned}
& \widetilde{F_{1}}(k):=\widetilde{F}(k) \cos (\Delta|k|), \\
& \widetilde{F_{2}}(k):=\widetilde{F}(k) \operatorname{sinc}(\Delta|k|)(-\Delta) .
\end{aligned}
$$

Corollary: We can write ENCODE ${ }^{-1}$ using observables at $t=t_{B}$. Problem solved!

An algebraic QFT result

Definition (smeared field operator): $\phi[F](t):=\int d^{d} x F(x) \phi(x, t)$
Claim: For any free field in any spacetime dimension:

$$
\underbrace{\phi[F]\left(t_{A}\right)}_{\begin{array}{c}
\text { observable at } \\
t_{A}
\end{array}}=\underbrace{\phi\left[F_{1}\right]\left(t_{B}\right)+\pi\left[F_{2}\right]\left(t_{B}\right)}_{\begin{array}{c}
\text { observables at } \\
t_{B}=t_{A}+\Delta
\end{array}}
$$

F_{1} and F_{2} are defined via Fourier transform:

$$
\widetilde{F_{1}}(k):=\tilde{F}(k) \cos (\Delta|k|),
$$

$$
\widehat{F_{2}}(k):=\tilde{F}(k) \operatorname{sinc}(\Delta|k|)(-\Delta) . \quad \text { Bob should be }
$$

Corollary: We can write ENCODE ${ }^{-1}$ using observables at $t=t_{B}$. Problem solved!

Where should Bob be in $3+1 D$?

Where should Bob be in $3+1 D$?

Where should Bob be in $3+1 D$?

Quantum information propagates on light-cone (strong Huygens principle).

Alice

Where should Bob be in $2+1 \mathrm{D}$?

Where should Bob be in $2+1 \mathrm{D}$?

Location of Alice at $t=t_{A}$

Location of Bob at $t=t_{A}+10$

Where should Bob be in $2+1 \mathrm{D}$?

Quantum information leaks inside light-cone (strong Huygens violation).

Quantum information broadcasting?

Quantum information broadcasting?

- No cloning theorem: quantum state cannot be cloned.

Quantum information broadcasting?

- No cloning theorem: quantum state cannot be cloned.
- Can Alice broadcast a small amount of quantum info to multiple Bobs?

Quantum information broadcasting?

Quantum information broadcasting?

Cannot broadcast message to both Bobs simultaneously

Conclusions

- Constructed quantum channel from Alice to Bob via quantum field

Conclusions

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)

Conclusions

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)
- Cannot broadcast quantum information to disjoint receivers (no-cloning theorem)

Conclusions

- Constructed quantum channel from Alice to Bob via quantum field
- Quantum information can travel slower than light via massless field (violation of strong Huygens principle)
- Cannot broadcast quantum information to disjoint receivers (no-cloning theorem)

THANK YOU!

