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Summary

1 A class of “out-of-time-order” correlation functions in thermal
systems exhibits a hierarchy of timescales t

(k)
∗ ∼ log(N). These

characterize aspects of quantum chaos.

2 To understand quantum aspects of black holes via AdS/CFT we are
interested in maximally chaotic theories. The relevant physics is
described by a novel “hydrodynamic” effective field theory of very
few collective degrees of freedom.
→ new tool to study large-c CFTs



Motivation

Usually QFT focuses on time-ordered (Feynman) path integrals

QFT has a lot more correlation functions than the time-ordered ones:

〈Ô1(t1) · · · Ôn(tn)〉

−→ n! time orderings

t

Seem to be very relevant for black holes, many body physics,...

I Dissipation, chaos, scrambling,... Schwinger, Keldysh; Feynman-Vernon, ’60s

(Maldacena-)Shenker-Stanford ’15

Roberts-Yoshida ’16, Sekino-Susskind ’08

Yunger Halpern ’17,...

I Generalized fluctuation relations

I Usually about QI-theoretic ideas
(entanglement, complexity, circuits...)



Out-of-time-order correlation functions

Convenient way to represent n-point function with generic time
ordering is the k-OTO contour

〈Ô4(t4)Ô1(t1)Ô3(t3)Ô2(t2)〉 =

t4 t3 t2 t1

I Feynman (time-ordered) correlators:

I ‘Schwinger-Keldysh’ contour (k = 1):



Review: classical chaos

Early times: classical Lyapunov exponents quantify divergence of
phase space trajectories

{q(t), p} ≡ δq(t)

δq(0)
∼ eλL t

Late times: ergodicity, thermalization



Review: quantum chaos

Out-of-time-order correlators (OTOCs):
quantify early time quantum chaos

〈W (t)V (0)W (t)V (0)〉β ∼ a0 − a1 e
λL(t−t∗)

(Maldacena–)Shenker–Stanford ’13-’15

Leichenauer ’14; Kitaev ’15; ...

I Quantum Lyapunov exponent obeys fundamental bound:

λL ≤
2π

β

I scrambling time: t∗ ∼ β
2π logN

Contrast this with TOCs:

〈W (t)W (t)V (0)V (0)〉β ∼ 〈WW 〉β 〈V V 〉β +O(e−t/tdiss)
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Higher-point OTOCs

The 4-point OTOC 〈W (t)V (0)W (t)V (0)〉β is “2-OTO”

The space of n-point OTOCs is classified mathematically [FH et al. ’17]

Q: What is the physics of higher-point OTOCs?

We studied a particular “k-OTO” 2k-point function [FH–Rozali ’17 ’18]

I Its characteristic thermalization time is

t
(k)
∗ ∼ (k − 1)× t∗

Hierarchy of timescales in early-time quantum chaos
associated with increasingly fine-grained probes of the
thermal state
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Higher-point OTOCs FH–Rozali ’17, ’18

Consider the following OTOC (assume t1 > t2 > . . . > tk):

F2k(t1, . . . , tk) =

〈
V1[V2, V1][V3, V2][V4, V3] · · · [Vk, Vk−1]Vk

〉reg.
β

〈V1V1〉β · · · 〈VkVk〉β

Dropping all commutators, the essential term is the following:

I “k-OTO”, i.e., requires k switchbacks in time

I maximally “braided” in imaginary time



Higher-point OTOCs

FH–Rozali ’17, ’18

F2k(t1, . . . , tk) =

〈
V1[V2, V1][V3, V2][V4, V3] · · · [Vk, Vk−1]Vk

〉reg.
β

〈V1V1〉β · · · 〈VkVk〉β

Claim:

F2k ∼ eλL(t−(k−1)t∗) with t = t1 − tk , t∗ =
2π

β
logN

I Depends only on total “duration of experiment” t = t1 − tk
I Characteristic time scale is (k − 1)t∗

I Sensitive to some more fine-grained information about the state



Effective field theory of chaos

We computed F2k in the Schwarzian theory (low energy SYK),
and in 2d CFTs at large central charge. Common features:

I Maximally chaotic (λL = 2π
β ) and scrambling hierarchy ((k − 1)t∗)

I Lyapunov behavior of OTOC can be described using effective field
theory of very few collective degrees of freedom εi(t, x)

〈W (t, x1)V (0, x3)W (t, x2)V (0, x4)〉β
∼ 〈Dx1,x2 [εi(t)]Dx3,x4 [εi(0)]〉
∼ 〈εi(t)εi(0)〉
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Effective field theory of chaos

What is this “scramblon” mode εi(t, x) (in CFT)?

I Goldstone mode of spontaneously broken conformal symmetry
I Describes the physics of stress tensor exchanges

F Formally looks like a “hydrodynamic” mode

I Effective action (can be derived from conformal symmetry):

Schwarzian (1d): S =
N

J

ˆ
dτ (∂3τ + ∂τ )ε ∂τ ε

Kitaev ’15, Maldacena–Stanford ’16, ...

CFT (2d): S = c

ˆ
d2x (∂3τ + ∂τ )ε (∂τ + i∂x)ε+ anti-holo.

FH–Rozali ’18, Cotler–Jensen ’18

CFT (d>2): (work in progress)

FH–Reeves–Rozali

I Perturbative parameter: 1
c

I Has a propagator 〈εε〉 with exponentially growing terms



Effective field theory of large-c physics

Use EFT tools for universal aspects of large-c CFT

I Captures the universal physics of energy conservation at large c

F Easy calculation of (2k-point) OTOCs [FH–Rozali ’18]

F “Boundary gravitons” in AdS/CFT [Cotler–Jensen ’18]

F Explains “pole skipping” [Blake–Lee–Liu ’18] [Blake–Davison–Grozdanov–Liu ’18]

I εi(x) naturally lives in kinematic space [Czech et al. ’16] [de Boer et al. ’16]

F New perspective on kinematic space and shadow operator formalism

F Novel tools for computing conformal blocks [FH–Reeves–Rozali w.i.p.]

F In particular: “gravity channels” of stress tensor exchanges

F Higher-point blocks relevant to AdS/CFT [Anous–FH–Perlmutter w.i.p.]

F 1
c
corrections
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Further Details



Reparametrization modes in CFT2

Go to finite temperature: (z, z̄) −→ (eiz, e−iz̄) (z ∼ z + 2π)

Consider holomorphic (and anti-holomorphic)
reparametrizations:

z 7→ z + ε(z, z̄) z̄ 7→ z̄ + ε̄(z, z̄)

SCFT 7→ SCFT +

ˆ
d2z

{
∂̄ε(z, z̄)T (z) + ∂ε̄(z, z̄) T̄ (z̄)

}
I For conformal transformations (ε(z, z̄) = ε(z) and ε̄(z, z̄) = ε̄(z̄)), this

is a symmetry, generated by standard conserved currents:

∂̄J(z) = ∂J̄(z̄) = 0 with J = ε(z)T (z) , J̄ = ε̄(z̄)T̄ (z̄)

Want to treat (ε, ε̄) as soft modes associated with conformal
symmetry breaking (c.f., [Turiaci–Verlinde ’16])



Reparametrization modes in CFT2

Next: Legendre transform, i.e., trade (T, T̄ ) fluctuations due to
sources (∂̄ε, ∂ε̄) for fluctuations of (ε, ε̄)

I Dynamics of (ε, ε̄) encodes same physics as stress tensor exchanges
I Holographically: gravitons

Quadratic effective action for the “soft modes”:

Iquad = −1

2

ˆ
d2z1d

2z2 ∂̄ε(z1, z̄1) ∂̄ε(z2, z̄2) 〈T (z1)T (z2)〉+ (anti-holo.)

This is universal since 〈T (z1)T (z2)〉 is fixed by conformality

Euclidean quadratic action reads (z = τ + iσ):

Iquad =
cπ

12

ˆ
dτdσ (∂τ + i∂σ)ε (∂3

τ + ∂τ )ε + (anti-holo.)



Pole skipping

[Blake–Lee–Liu ’18] and [Blake–Davison–Grozdanov–Liu ’18] discussed pole skipping
I Retarded energy-energy 2-point function has line of

diffusion poles in complex ω-plane

I However, there is no pole at (ω, k) = (iλL,
iλL

vB
)

I Proposed this as smoking gun of Lyapunov behavior of OTOCs

I Starting point for “hydrodynamic” theory of an effective chaos mode

Can see this explicitly in CFT2: [FH–Rozali ’18]

GRT̄ T̄ (ω, k) =
cπ

6

ω(ω2 + 1)

ω − k

I Universal for any CFT2

I What are the precise assumptions in order to associate pole skipping
with chaos?



Conformal Blocks

[Cotler–Jensen ’18] derived a non-linear version of our action
I Chiral QFT of boundary gravitons in AdS3 (reparametrization

field on Diff(S1))

I Aka Alekseev-Shatashvili path integral quantization of
Diff(S1)/PSL(2,R) coadjoint orbit of Virasoro

Reproduced basic results about vacuum block (in “light-light” and
“heavy-light” limits) from Feynman diagram calculations in this
effective theory

E.g., “light-light” vacuum block (hV , hW � c)

〈V (z1)V (z2)W (z3)W (z4)〉

=
1

(z12)2hV (z34)2hW

[
1 + 〈B(1)hV

(z1, z2)B(1)hW
(z3, z4)〉︸ ︷︷ ︸

2hV hW
c z2 2F1(2,2,4,z)

+O
(

1

c2

)]
︸ ︷︷ ︸

exp
(

2hV hW
c z2 2F1(2,2,4,z)

)
(1+O(1/c))
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