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Macroscopic	numbers	of	Majorana modes	are	
predicted	to	occur	if	a	layer	of	ordinary	
superconductor	is	placed	on	a	strong	topological
insulator	in	a	transverse	magnetic	field
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1)	Motivation	and	Model
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-A	MM	is	localized	near	the	centre of	each	superconducting	vortex
-MM’s	can	tunnel	between	vortices	and	interact	with	each	other	
with	short-range	interactions,	∝ 𝑒#$/&
-tunneling	amplitude	goes	to	zero	if	gate	chemical	potential	of	
topological	superconductor	is	tuned	to	a	special	value
-We	have	studied	simplest	possible	version	of	this	model	
with	shortest	possible	range	interactions-
“Majorana-Hubbard	Model”,	
hopping	amplitude	t,	interactions	g,	vs.	g/t	of	either	sign
So	far:	-1	dimensional	case,	2	dimensional	square	lattice,	square
lattice	ladders,	triangular	lattice	ladders	(preliminary)
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1D	Case

•No	conserved	particle	number	in	this	model	but	important	
discrete	symmetries
•Can	be	studied	by	field	theory	and	DMRG
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-Majoranas like	to	pair	up	and	form	complex	“Dirac”	fermions

-defining	𝑐( =
*+,-.*+,/0

1
, 𝑖𝛾1(	𝛾1(-6 =2𝑐(-𝑐( − 1 so	half	the	

interactions	terms	become	−𝑔∑ 2𝑐(-𝑐( − 1 2𝑐(-6- 𝑐(-6 − 1 				�
( 	

-note	that	g>0	is	attractive	interaction,	g<0	repulsive
-no	conserved	charge	so	mean	field	density	determined	by	
interactions.		2	mean	field	ground	states	for	g>0	(attractive
interactions)

-2	ways	of	pairing	up	MM’s

-resulting	Dirac	levels	are	empty
(for	t>0) 6
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We	may	rewrite	full	Hamiltonian	in	complex	fermion	basis	defining
𝑝]( ≡ 2𝑐(-𝑐( − 1 as:

𝐻 =`{−𝑡�̂�( − 𝑡 𝑐(- − 𝑐( 𝑐(-6- + 𝑐(-6 + 𝑔 −�̂�(�̂�(-6 + 𝑐(- − 𝑐( �̂�(-6 𝑐(-1- + 𝑐(-1 }
(

Keeping	only	1st t	term	and	1st g	term	is	mean	field	theory
-remarkably,	this	turns	out	to	be	qualitatively	correct	at	
large	|g|



4	mean	field	ground	states	for	g<0	(repulsive	interactions)
-charge	density	wave
-we	verified	that	these	phases	occur	at	strong	coupling	
numerically	- DMRG
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Non-interacting	model	we	solve	by	Fourier	transforming:

𝛾f =
1
2𝐿

�
`𝛾(𝑒.f(
h

(ij

Note	that	𝛾#f = 𝛾f-.	We	can	diagonalize: 𝐻 = 2𝑡`𝛾f-𝛾f klm f

�

fnj

𝜖

k

Note	that	all	states	are	empty	in	ground	state.		There	
Are	only	particle	excitations,	not	holes	– signature	of	

Majorana fermions.	Low	energy	excitations	have	
linear	dispersion:	relativistic
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Low	energy	effective	Hamiltonian	is	relativistic	Majorana model:
Let	𝛾( ≈ 2𝛾q 𝑣𝑡 − 𝑥 + (−1)(2𝛾h 𝑣𝑡 + 𝑥

𝐻 = 𝑖𝑣t𝑑𝑥[𝛾q𝜕x𝛾q − 𝛾h𝜕x𝛾h]
�

�

where	𝛾q/h is	Hermitean,	v=4t

These	operators	have	RG	scaling	dimension	½	so	that
H	has	dimension	1	(energy).		Lowest	dimension	
continuum	interaction	term	is
𝐻.z{ = −256𝑔 ∫𝑑𝑥𝛾q𝜕x𝛾q𝛾h𝜕x𝛾h

�
� of	dimension	4,	

highly	irrelevant	at	weak	coupling.	(Derivatives	needed	
since	𝛾q/h1 =constant.)			So,	we	expect	to	get	
free	Majorana dispersion	at	least	for	small	enough	g.
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At	sufficiently	large	g	we	find	broken	symmetry	phases	
predicted	by	Mean	Field	Theory.		Remarkably,	transition
at	g>0	occurs	at	g≈256	and	for	g<0	at	g≈ −3.0. This	made
numerics extremely	challenging.	Correlation	length	is	
∞ for	g<256	and	only	comes	down	to	perhaps	a	few	
hundred	at	g=∞.	Nature	of	2nd order	phase	transition	for
g=256	is	interesting.	The	critical	line	with	g<256	corresponds
to	the	1D	quantum	Ising model:	𝐻 = ∑ [−𝜎(�𝜎(-6� + ℎ𝜎(x]�

(
at	critical	point	h=1.	The	symmetry	that	keeps	model	critical
is	translation	by	1	site,	which	takes	𝛾q → −𝛾q forbidding	
the	mass	term	𝑚	𝛾q 𝛾h.	The	corresponding	symmetry	in	
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Ising	model	is	called	Kramers-Wannier duality.		This	is	a	
symmetry	which	takes	h-1→-(h-1)	for	h	near	1.		It	switches
broken	and	unbroken	symmetry	phases.	Ising transition	
becomes	1st order	if	we	insert	a	high	enough	density	of	
randomly	located	vacancies.	This	transition	can	be	realized	
By	using	s=1	spins,	instead	of	s=1/2	and	inserting	a	(Sz)2
term	which	favours Sz=0.	
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𝐻 = −` [𝑆(�𝑆(-6�
�

(
− 𝛾𝑆(x − 𝛿 𝑆(�

1]
Supplemental Material for “Emergent Supersymmetry from Strongly Interacting Majorana

Fermions”

CONNECTION TO SPIN CHAINS

A standard Jordan-Wigner transformation �z
j = 2n j � 1 and

�+j = ei⇡
P

k< j nk c†j brings the Hamiltonian (2) of the main text
to the form of a spin chain

H = t1
X

j

�z
j � t2

X

j

�x
j�

x
j+1 � g1

X

j

�z
j�

z
j+1 � g2

X

j

�x
j�

x
j+2,

(1)
which for g1 = 0 corresponds to the anisotropic next-nearest-
neighbor Ising (ANNNI) model [1]. For t1 = t2 = 0, the
Hamiltonian (1) is dual to a transverse field Ising model with
4-spin interactions

Hg = �g1

X

j

⌧z
j � g2

X

j

⌧x
j�1⌧

x
j⌧

x
j+1⌧

x
j+2, (2)

in terms of domain-wall variable ⌧z
j = �

z
j�

z
j+1.

The Hamiltonian (2) is self-dual at g1 = g2 [2, 3]. As ar-
gued in Refs. [4, 5], the ground state of Hg is 8-fold degener-
ate for g1 = 0, while the g1 term causes quantum fluctuations
between these degenerate states. This bears a striking sim-
ilarity to the 8-state Potts model, which strongly suggests a
first-order phase transition at g1 = g2 [4, 5].

SIMILARITIES WITH THE BLUME-CAPEL MODEL

As mentioned in the main text, the canonical example of
the TCI CFT appears in the Blume-Caple model, which is a
quantum spin-1 chain with the Hamiltonian

HBC = �
X

j

h
S z( j)S z( j + 1) � �S x( j) � �S 2

z (i)
i
. (3)

Similar to the one-dimensional spin- 1
2 transverse-field Ising

model, which corresponds to the two-dimensional classical
Ising model at finite temperature, this spin chain corresponds
to a two-dimensional classical Ising model with vacancies
(S z = 0), with � serving as a chemical potential for these va-
cancies. For � = �1, the Blume-Caple model maps to the
transverse-filed Ising model and exhibits a 2nd-order phase
transition between a ferromagnet and a paramagnet with the
critical point given by the Ising CFT. For � = 0, the model is
classical and has a 1st-order transition between a ferromagnet
and the S z( j) = 0 state. The line of the 2nd-order transition
terminates at the TCI point, where a line of 1st-order transition
begins.

The above Hamiltonian has two dimensionless parame-
ters. We can write a generalization of our model, which also
has two dimensionless parameters, by staggering the hopping
terms [Eq. (2) of the main text with g1 = g2 = g > 0]. The
phase diagrams are essentially the same as seen in Fig. 1. In

FIG. 1: Left: the phase diagram of the Blume-Capel model (3) from
Ref. [7]. Right: the phase diagram of our model with staggered hop-
ping [Eq.(2) of the main text] with g1 = g2 = g > 0. The solid blue
(dashed green) line represents a 2nd (1st) order transition with the
TCI point denoted by a red star.

our model broken translation t1 � t2 , 0 immediately gaps the
system.

FINITE SIZE SPECTRUM FROM CFT

The finite size spectrum of the Ising and TCI model with
both APBC and PBC can be derived using modular invari-
ance [6]. Consider an imaginary time Feynman path integral
for the partition function at inverse temperature � for free rel-
ativistic Majorana fermions. As is well known, the boundary
conditions must be antiperiodic in the imaginary time direc-
tion. Thus, when we also impose APBC in the space direction
the partition function

Z =
X

n

e�2⇡vyn�/L, with En =
2⇡vyn

L
(4)

is modular invariant. Each state corresponds to a left and
right-moving factor and the energy is a sum of left and right
moving parts:

yn = xn + x̄n, with xn = �
c

24
+ xi + n, (5)

for nonnegative integers n, constants xi, which characterize
each conformal tower of states, and the central charge c of
the CFT. Each excited state in left and right moving confor-
mal towers can occur independently. We define the character
corresponding to a given chiral conformal tower as

�i(�/L) ⌘
1X

n=0

dine�(2⇡v�/L)(�c/24+xi+n), (6)

where din are nonnegative integers, which account for possible
degeneracies of excited states in each conformal tower. The

Solid	line	is	2nd order	transition
dashed	line	is	1st order.		Star	marks
transition	from	2nd to	1st order:
tricritical Ising model.	This	model
is	a	Supersymmetric	conformal	
field	theory.	For
g slightly	bigger	than	256	we	
predict	fermions	and	bosons	(bound
state)		of	same	mass.



Phase	Diagram	

g/t
Ising

Ising
+	L.L.

gapped,	
2-fold	deg.
super-
symmetric

gapped,
4-fold	deg

Tri-critical
Ising

LifshitzGeneralized
C-IC

0

g/t=+∞	are	equivalent,	for	g/t>>1	phase,	low-lying
excited	doublet	has	energy		∝ |𝑡| (1st order	transition)
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There	is	also	a	remarkable	intermediate	phase	for	g<0	
(repulsive	interactions).		This	can	be	understand	from	
interactions	modifying	the	dispersion	relation	for	the	
free	Majorana fermions.		A	2nd neighbour hopping	term	is	
not	allowed	by	symmetry.		The	symmetry	is	time	reversal:
𝑖 → −𝑖, 𝛾( → (−1)(𝛾(.			But	a	3rd neighbour hopping	term	
Is	allowed	and	gets	generated	by	interactions.	This	
Modifies	the	dispersion	relation	to	𝜀 =2t	sin	k	+	2t3 sin	(3k)
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FIG. 6. (Color online) Dispersion relation indicating a Lifshitz
transition. For |t ′| < t/3, the zeros of the dispersion relation are at k =
0 and k = π . At |t ′| = t/3, the velocities of both these low-energy
modes vanish and for |t ′| > t/3, new low-energy modes appear at
finite momenta k0 and π − k0, with k0 = 0 at the Lifshitz transition
|t ′| = t/3.

we will see in Sec. V, a mean-field calculation captures this
transition with good accuracy (see Fig. 4).

Third-neighbor hopping is indeed allowed by all sym-
metries. [Spatial parity symmetry γj → (− 1)jγ− j forbids a
second neighbor hopping term. Notice that a naive parity
transformation γj → γ− j changes the sign of the nearest-
neighbor hopping term and the (− 1)j term simply correct for
this.] Consider a quadratic Hamiltonian

H = i
∑

j

γj [tγj+1 + t ′γj+3] = 1
2

∑

k

Ekγ (− k)γ (k) (3.3)

with Ek = 4t sin k + 4t ′ sin(3k). As in Appendix A, it is
convenient to regard γ (k) as an annihilation operator for the
regions of k where Ek > 0 and write γ (k) as γ †(− k) for the
complementary regions. Consider the case t > 0, t ′ < 0. For
t ′ > − t/3, Ek vanishes at k = 0 and π only, with velocity
v = 4t + 12t ′. However, v → 0 at t ′ = − t/3. For t ′ < − t/3,
Ek vanishes at four other points, ±k0 and ±(π − k0) with
sin k0 = (1/2)

√
3 + t/t ′. Now there are three regions of k

where Ek > 0, shown by thick black lines in Fig. 6. The
velocity at k = 0 is v0 = 16 sin2 k0, while at k = k0,π − k0,
we have v = 2v0 cos k0. Note that v0 and v increase linearly
with − t ′ − t/3 while k0 increase more rapidly ∝

√
− t ′ − t/3.

Here, k0 plays the role of a Fermi wave vector. We may again
introduce relativistic fermions to represent the low-energy
excitations as

γj ≈ 2γL(j ) + (− 1)j 2γR(j )

+ [e− ik0jψR(j ) + ei(k0− π)jψL(j ) + H.c.]. (3.4)

Here, ψR/L are Dirac fermion operators, simply related to
the Fourier modes of the original Majoranas as

ψR(q) = γ (k0 + q), ψL(− q) = γ (π − k0 − q),

− $ < q < $, (3.5)

where $ ≪ 1 is the momentum cut-off of the low-energy
sector. Note that the right/left movers occur at k points where
Ek has positive/negative slope. For k slightly larger than k0,
γ (k) is identified with a right-moving particle annihilation
operator whereas for k slightly less than k0 it is identified with
a right-moving antiparticle creation operator. The low-energy
Hamiltonian becomes

H0 = i

∫
dx[v0(γL∂xγL − γR∂xγR)

+ v(ψ†
L∂xψL − ψ

†
R∂xψR)]. (3.6)

We now consider the effect of the interactions. These
are most rigorously treated if we added a t ′ term to the
Hamiltonian by hand, and then turned on a small g. However,
we expect the universal properties of the resulting phase to also
describe the case at hand where t ′ is generated dynamically.
However, in this case, we are not in the weak-coupling regime
since |g| must be O(t) to drive the Lifshitz transition. Since
we have more fields in the low-energy field theory, it is
possible to have nonderivative interaction terms. Many of these
come with spatially oscillating factors, making them irrelevant
for general values of k0. However, there are two nonoscillatory
four-fermion interactions allowed by symmetry:

Hint ≈
∫

dx[g0 : ψ
†
LψLψ

†
RψR : +g′γRγL(ψLψR + ψ

†
Lψ

†
R)],

(3.7)

where g0 = − 16g[cos k0 − cos(3k0)] for weak coupling and
“:” indicates normal ordering. Since we are considering g < 0,
we have g0 > 0 corresponding to repulsive interactions. The
effects of this term by itself are well-known and easily treated
using bosonization techniques, leading to a Luttinger liquid
(LL). This corresponds to a free massless relativistic boson
theory with the RG scaling dimensions varying continuously.
These scaling dimensions are controlled by a single dimen-
sionless parameter K known as the Luttinger parameter,
which takes the value K = 1 − g0

2πv
+ . . . for weak coupling.

Generally, we have K < 1 for repulsive interactions.
We now argue that the second term in Eq. (3.7) above is

irrelevant in the RG sense for K < 1. The scaling dimension of
ψLψR appearing in the g′ interaction is 1/K , which is larger
than one for repulsive interactions. The γRγL factor in this
term also contributes 1 to the scaling dimension which leads
to & = 1 + 1/K > 2, making it irrelevant. Therefore we find
that the Ising and LL sectors are decoupled in the low-energy
theory. This implies that a U(1) charge conservation symmetry
emerges in the LL sector of the Ising+LL phase, along with
an associated Fermi wave-vector k0. The charge is related to
the occupation of modes near momenta ±k0 and ±(π − k0) as

N̂ =
∑

− $<q<$

[γ †(k0 + q)γ (k0 + q)

+ γ †(π − k0 − q)γ (π − k0 − q) − 1]. (3.8)

235123-6

𝜀

t3=0

t3=t/3

t3>t/3

0

For	t3>t/3,	low	energy	theory	
has	both	relativistic	Majorana
fermions	and	complex	fermions.	Interaction
Additional	interaction	terms	allowed	by	
symmetry	and	non-oscillating	are:

𝐻.z{ = t
𝑑𝑥[𝑔6𝜓q-𝜓q𝜓h-𝜓h

+𝑔1𝛾q𝛾h(𝜓q𝜓h + 𝜓q-𝜓h-]

�

�

1st term	is	standard	Luttinger
liquid	interaction- continuously	
changes	“Luttinger parameter”	
which	determines	critical	exponents.
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2nd term	is	irrelevant	for	repulsive	interactions	(g<0).
There	is	also	a	term	that	alternates	with	a	wave-vector	
determined	by	k0:	

𝐻.z{ = t𝑑𝑥𝛾q𝛾h[𝑒. �f�#� x𝜓q-𝜕x𝜓q-𝜓h𝜕x𝜓h − ℎ. 𝑐. ]
�

�
This	is	irrelevant	unless	repulsive	interactions	are	very	
strong,	K<1/4,	and	oscillates	unless	𝑘j = 𝜋/4.
The	transition	into	this	“c=3/2	phase”,	at	g=-0.3,		is	a	
“Lifshitz transition”.	Not	relativistic,	cubic	dispersion	relation.	
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The	transition	out	of	the	c=3/2	phase	into	the	
strong	coupling	broken	symmetry	phase	occurs	at	g=-3.0	
occurs	because	K	goes	to	¼	and	𝑘j	goes	to	𝜋	/4
simultaneously!	We	calculate	K	and	k0 using	DMRG	to	
get	the	finite	size	spectrum	and	came	to	this	remarkable
conclusion.



2	Dimensional	Square	Lattice	Case

19



g

t

t2

Signs	of	hopping	terms	
are	determined	by	1	
flux	quantum	per	plaquette.
Interactions	on	plaquettes.
g>0	is	attractive	interaction	

20



-t2 term	breaks	T-reversal	symmetry	and	changes
phase	diagram	significantly

21



Mean	Field	Phase	Diagram

-4	phases!
-this	is	t2=0	phase	diagram	– might	hope	t2 is	small
-will	discuss	effects	of	t2 later

0
g/t

gaplessBroken
T-reversal

“ferromagnetic”
MM	pairing

“antiferromagnetic”
MM	pairing

SUSY

2nd order	transition

1st order	transition

22



-phases	are	characterized	by	spontaneously	
broken	symmetries

-what	are	symmetries	of	H	which	might	get	broken?
1) Translation	by	1	site	in	x or	y direction
2) π/2	rotation	symmetry

(if	t2=0	only)
3)	Time	reversal
4)	Parity	(spatial	reflection)
(PT	a	symmetry	even	for	t2 non-zero)
In	addition	there	are	“emergent	symmetries”	in	
low	energy	effective	field	theory 23



-these	pairing	phases	also	break	
rotational	symmetry	and	parity	symmetry	(t2=0)
-depending	on	sign	of	g,	we	can	obtain	
“ferromagnetic”	or	“antiferromagnetic”	pairing	
phases:
<iγm,nγm,n+1>=A+B(-1)n
-ferromagnetic
-favoured for	g>0
-pairs	of	Majoranas form	Dirac	fermions,	all	
energy	levels	empty
4 ground	states																

24



<iγm,nγm,n+1>=C(-1)m+D(-1)m+n	

-antiferromagnetic
-favoured for	g<0
-pairs	of	Majoranas form
Dirac	fermions:	alternating
filled	or	empty
-8 ground	states	in	this	case:
-Translate	by	1	site	in	
x	or	y direction

25



-these	pairing	phases	also	break	
rotational	symmetry	and	parity	symmetry	(t2=0)
-Time	Reversal:
takes	γm,nè(-1)m+nγm,n,			iè-i (anti-unitary)
-broken	by	it2γm,nγm+1,n+1
-for	t2=0,	this	symmetry	can	be	spontaneously	
broken	(effectively	generate	a	t2)
-this	describes	all	broken	symmetry	phases	found
in	Mean	Field	Theory

26



Field	Theory/Renormalization	
Group	Approach	and	Nature	of	Critical	Points

-exact	dispersion	relation	for	non-interacting	model:

𝐸± = ± (4𝑡𝑠𝑖𝑛	𝑘x)1 + (4𝑡𝑠𝑖𝑛	𝑘�)1 + (8𝑡1𝑐𝑜𝑠𝑘x cos 𝑘�)1
�

with	0<kx<π,	-π/2<ky<π/2,		
-for	t2<<t,		low	energy	excitations	near	2	points	in	
k-space:	(0,0)	and	(π,0)	where	Lorentz-invariant	dispersion	

relation	occurs:		𝐸±~ ± 16𝑡1 𝑘
1
+ 64 𝑡1 1

�

-2	“valleys”	like	in	graphene but	Majorana modes
27



-low	energy	field	theory	has	2	species	of	
2-component	Majorana fermions	which	can	be	combined	into
a	single	species	of	Dirac	fermions
-ignoring	higher	derivative	terms,	Lagrangian
density,	including	interactions,	is	Lorentz	invariant

Here	the	γμ are	3	2-dimensional	gamma	matrices,	I	set	v=1	
and																
-2	components	from	inequivalent even	and	odd	rows		
-in	addition	to	emergent	Lorentz	invariant	there	is
an	emergent	U(1)	(particle	number	conservation)
symmetry! 28



-Interactions	are	“irrelevant”	in	RG	sense
-if	bare	g is	small	enough,	it	renormalizes	to	0
giving	an	effective	free	fermion phase

The	interaction	term	in	the	low	energy	theory	is

For	g>0	this	is	an	attractive	pairing	interaction,
so	we	get	a	transition	to	a	superfluid phase	for	
strong	enough	positive	g – corresponds	to	
ferromagnetic	pairing	phase
-also	higher	dimension	U(1)	breaking	terms

29



-for	t2=0,	fermions	are	massless in	g<gc phase
-at	superfluid transition	we	get	a	massless
boson	as	well	as	massess fermions
-this	transition	is	Supersymmetric – equivalent	
fermions	and	bosons
-this	has	been	studied	in	other	condensed	matter
contexts	but	it	is	remarkable	here	that	U(1)	
symmetry	is	emergent
-a	non-zero	t2 gives	fermions	a	mass
-now	superfluid transition	is	in	usual	U(1)-breaking
(2+1)	dimensional	universality	class

30
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There	is	a	U(1)	breaking	term	in	the	effective	Hamiltonian:
𝐻.z{ = 𝑔′ ∫ 𝑑𝑥[𝜓6𝜕x𝜓6

�
� 𝜓1𝜕x𝜓1-𝜓6𝜕�𝜓6𝜓1𝜕�𝜓1+h.c.].

With	Kyle	Wamer we	showed	that	this	remains	irrelevant
at	critical	point,	using	the	𝜀- expansion.



-for	g<0,	and	t2=0,	order	parameter	is
-at	strong	enough	repulsive	g (<0)	time-reversal	
is	spontaneously	broken	leading	to	the	appearance
of	a	mass	term
-this	corresponds	to	spontaneous	generation	of	
a	2nd neighbour hopping	term,	t2 in	the	lattice	model
-this	2nd order	transition	has	also	been	studied	in
the	field	theory	context	– Yukawa-Gross-Neveu model
-in	both	cases	critical	exponents	have	been	
approximately	determined	using	the	ε-exponent
(some	are	fixed	by	Supersymmetry in	g>0	case)
-this	transition	doesn’t	occur	for	t2≠0 32
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We	have	studied	2	and	4-leg	ladders,	with	square	
lattice	geometry	by	a	combination	of	analytic	and	
DMRG	methods.	In	the	2-leg	case,	there	is	an	exact	U(1)
symmetry,	as	we	see	by	defining	complex	fermions:
𝑐� = (𝛾�,j + 𝑖 −1)�𝛾�,6 /2. Then,	the	horizontal	hopping
term	becomes:	2𝑖𝑡 ∑ 𝑐�-𝑐�-6 − ℎ. 𝑐.�

� 	and	the	vertical
hopping	term	2𝑡 ∑ (−1)�𝑐�-𝑐��

� .
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If	we	impose	periodic	boundary	conditions	in	the	vertical
direction,	the	vertical	hopping	term	vanishes.	Then,	by	
Jordan-Wigner	transformation,	H	maps	into	the	xxz model:

𝐻 =` [𝑡(𝜎�x
�

(
𝜎�-6x + 𝜎�

�𝜎�-6
� ) + 2𝑔𝜎�� 𝜎�-6� ].

Noting	that	𝑖𝛾�,� 𝛾�,6 = (−1)�(2𝑐�-𝑐� − 1) → (−1)�𝜎�� ,
We	see	that	the	antiferromagnetic	order	which	occurs	
For	g>1/2	corresponds	to	the	mean	field	ground	state:

3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as

�e~k ⌘
1

p
2WL

X

m,n

ei(mkx+2nky)�em,2n, (2.2)

�o~k ⌘
1

p
2WL

X

m,n

ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X

kx>0,ky

h ⇣
�e†~k �

e
~k
� �o†~k �

o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)
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and	the	ferromagnetic	order	which	occurs	for	g<-1/2	corresponds
to	the	mean	field	state:

3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as

�e~k ⌘
1

p
2WL

X

m,n

ei(mkx+2nky)�em,2n, (2.2)

�o~k ⌘
1

p
2WL

X

m,n

ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X

kx>0,ky

h ⇣
�e†~k �

e
~k
� �o†~k �

o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)

For	the	4-leg	case	there	is	no	exact	U(1)	symmetry	and	the	model
is	not	analytically	solveable except	at	infinite	coupling.	We	
analyzed	it	with	DMRG.		To	analyze	the	infinite	coupling	limit	we
define	complex	fermions:
𝑐�,6 ≡ (𝛾�,j + 𝑖𝛾�,6)/2, 𝑐�,1 ≡ (𝛾�,1 + 𝑖𝛾�,�)/2.		Then	it	can
be	seem	that	the	interaction	term	preserves	fermion	parity	on	
each	rung	(unlike	the	horizontal	hopping	term).
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So,	at	strong	coupling	we	can	restrict	ourselves	to	only	
2	states	(with	fixed	fermion	parity)	on	each	rung.	We	
can	map	these	2	states	into	the	xy model	with	Hamiltonian:
𝐻 = −2𝑔∑ [�� 𝜎�� 𝜎�-6� + 𝜎�x𝜎�-6x ].		This	is	the	gapless	
xy (or	xz)	model.	Unlike	the	2-leg	case,	this	model	is	
gapless	with	no	broken	symmetry	(except	for	fermion	
parity).		Adding	a	small	hopping	term	produces	a	gap.	
For	small	t/g	we	can	ignore	horizontal	hopping	since	it	
changes	the	fermion	parity	on	each	rung.	This	can	be	
shown	to	increase	the	energy	by	an	amount	of	O(g).
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On	the	other	hand,	vertical	hopping	just	gives	a	perturbation:

𝐻 =` [
�

�
− 2𝑔(𝜎�� 𝜎�-6� + 𝜎�x𝜎�-6x ) + 2𝑡𝜎�� ]

For	even	fermion	parity	and	

𝐻 =` [
�

�
− 2𝑔 𝜎�� 𝜎�-6� + 𝜎�x𝜎�-6x − 2𝑡𝜎�x ]

For	odd	fermion	parity.	These	leads	to	gapped	states	with	
the	spins	ordering	in	the	–z	or	+x	direction	for	even	or	odd
fermion	parity.		For	even	fermion	parity	
𝑖𝛾�,j𝛾�,6, 𝑖𝛾�,1𝛾�,� → 𝜎�� so	the	ferromagnetic	order
corresponds	to	
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3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as

�e~k ⌘
1

p
2WL

X

m,n

ei(mkx+2nky)�em,2n, (2.2)

�o~k ⌘
1

p
2WL

X

m,n

ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X

kx>0,ky

h ⇣
�e†~k �

e
~k
� �o†~k �

o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)

3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as
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1
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2WL
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ei(mkx+2nky)�em,2n, (2.2)
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The hopping term in H then becomes:
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⌘
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Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)

On	the	other	hand,	for	odd	fermion	parity
𝑖𝛾�,6𝛾�,1, 𝑖𝛾�,�𝛾�,j → −𝜎�x so	we	get	the	other	
mean	field	state:	

even	fermion	parity
odd	fermion	parity
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On	the	other	hand,	for	g<0	we	get	an	antiferromagnet
with	a	uniform	magnetic	field.		This	gives	2	ground	states
with	the	spins	canted	in	the	field	direction.	For	the	field	
In	the	x-direction	the	2	states	are:	Including	both	fermion	

parities,	the	4	ground	states	can	be	
seen	to	correspond	to	the	4	mean	
field	ground	states:

6

rung can be written by adding the contributions of all
the terms in the table above:

it
X

j

�m,j�m,j+1 = 2t�3
m (even fermion parity),

it
X

j

�m,j�m,j+1 = �2t�1
m (odd fermion parity).

On the other hand, hopping terms in the horizontal
direction, i.e., it�m,j�m+1,j , contain terms with a single
creation or annihilation operator for each rung. There-
fore, they change the fermion number on each rung by
±1, reversing the fermion parity. consider these terms
as a perturbation around the ground state of the t = 0
model, for which all rungs have the same fermion parity.
Upon acting on the ground state, we get a state in which
two of the neighboring bonds have opposite fermion par-
ity, raising the energy by order O(g). Specifically, act-
ing with the hopping term on the m $ (m + 1) bond
gives opposite fermion parity on the (m � 1) $ m and
(m+ 1) $ (m+ 2) bonds. Such high-energy states con-
tribute at second-order in perturbation theory and have
e↵ects of order O(t2/g). Thus, the leading-order Hamil-
tonian to first-order in the small hopping t can be written
for the two cases of even and odd fermion parity on every
rung as

Heven =
X

m

[�2g(�3
m�3

m+1 + �1
m�1

m+1) + 2t�3
m],

Hodd =
X

m

[�2g(�3
m�3

m+1 + �1
m�1

m+1)� 2t�1
m].

The behavior of the above Hamiltonians are easy to un-
derstand. For t = 0, we have an XY chain in the 1-3
plane. Furthermore, the sign of t is unimportant as it
can be changed by a ⇡ rotation. The two Hamiltonians
for the even and odd sector are also equivalent as they
are related by a ⇡/2 rotation. In our convention, with
t > 0, the even (odd) case has an in-plane magnetic field
in the +3 (�1) direction.

Let us first focus on the g > 0 case, where the XY
interaction is ferromagnetic. The spins have a tendency
to align in the plane and any nonzero filed in the plane
explicitly breaks the symmetry and picks a direction. As-
suming t > 0 (without loss of generality), for g > 0,
h�3

mi < 0 for even fermion parity and h�1
mi > 0 for odd

fermion parity, since the hopping term give a filed in the
positive 3 (negative 1) for even (odd) parity.

The interpretation of these states in terms of the Ma-
jorana fermions can be obtained from the table above.
For instance, the state with h�3

mi < 0 for even parity has
hi�m,0�m,1i = hi�m,2�m,3i < 0, which corresponds to the
two Dirac fermion levels formed on vertical bonds 0 � 1
and 2�3 being empty. For odd fermion parity, we see that
h�1

mi > 0 corresponds to hi�m,1�m,2i = hi�m,3�m,0i < 0,
i.e., the two Dirac fermion levels formed on vertical bonds
1� 2 and 3� 0 being empty. These correspond precisely
to the two mean field 2D ground states of Fig. (2). The
ladder geometry breaks the ⇡/2 rotation symmetry of the

Figure 3. A cartoon picture for the ground states of the ferro-
magnetic and antiferromagnetic XY chain in an in-plane field
~B.

2D square lattice and favors Dirac fermions forming on
vertical, not horizontal links. So, the number of ground
states is 2, not 4.
It is also interesting to note that, since the expecta-

tion value of �1 vanishes with respect to an eigenstate
of �3, h�1

mi is presumably zero in the even fermion par-
ity sector, for which �3 is condensed with h�3

mi < 0.
Thus hi�m,1�m,2i = hi�m,3�m,0i = 0. This is similar to
the mean field picture in the 2D case, where �m,0 and
�m,1 combine to form a Dirac fermion and also �m,2 and
�m,3. With these pairs of Majoranas combining, two Ma-
joranas from di↵erent pairs, e.g., �m,1 and �m,2 remain
unentangled so their product has zero expectation value
(and similarly for the �m,3�m,0 product). The same ar-
gument in the odd fermion parity sector leads to h�3

i = 0
corresponding to �0��1 and �2��3 not being entangled.
We now consider the g < 0 case, where the XY chain

is antiferromagnetic. The e↵ect of the t term is again a
uniform in-plane magnetic field. In this case, we expect
the direction of the in-plane antiferromagnetic order to
be perpendicular to the field. It is well known that clas-
sically, minimizing the energy

P
m[J cos(✓m � ✓m+1) �

2h cos(✓j)] of antiferromagnetically interacting XY spins
in an in-plane field leads to canting in the direction of
the field and antiferromagnetic ordering perpendicular
to the field. We expect the same physics to appear quan-
tum mechanically. Indeed, a variational quantum wave
function made of a product of in-plane spin- 12 variables
cos(✓m/2)| "im + sin(✓m/2)| #im gives the same energy
expectation value as the above classical energy. Impor-
tantly, there is no violation of the Mermin-Wagner the-
orem since there is no U(1) continuous symmetry once
the magnetic field is present. There is a unique classical
direction for the antiferromagnetic order (up to a sign)
and breaking of the discrete Z2 symmetry in the quan-
tum model is expected. These states are shown in Fig. 3.

Thus, because the even (odd) sector has a field in the
3 (1) direction, we expect antiferromagnetic order to ap-
pear in the perpendicular, i.e., 1 (3) direction:

h�1
mi / (�1)m (even fermion parity)

h�3
mi / (�1)m (odd fermion parity). (4.6)

Again, we see that these states correspond to forming
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3

(Here we use slightly di↵erent notation than in [27] to
simplify some formulas.) For a chain of 2W rows of length
L we Fourier transform the Majorana operators as
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ei[mkx+(2n+1)ky ]�0m,2n+1. (2.3)

The hopping term in H then becomes:

H0 = �4t
X
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o
~k

⌘
sin kx

+
⇣
�e†~k �

o
~k
+ �o†~k �

e
~k

⌘
sin ky

i
.

(2.4)

Here we have used the fact that �e/o
�~k

= �e/o†~k
to restrict

the Brillouin zone to 0  kx < ⇡, �⇡/2  ky < ⇡/2. Di-
agonalizing the above noninteracting Hamiltonian gives
the following energy bands:

E± = ±4t
q
sin2 kx + sin2 ky. (2.5)

The low energy Hamiltonian corresponds to two two-
component relativistic Majorana fermions at the two
“Dirac points” (0, 0) and (⇡, 0), which can be combined
into a single relativistic Dirac fermion,  . The interac-
tion term becomes:

Hint = 32g( ̄ )2, (2.6)

which is an irrelevant interaction in the relativistic (2+1)-
dimensional field theory, leading to a massless phase for
su�ciently weak coupling. We predicted in Ref. [27] that,
at a critical positive coupling, gc4, there is a transition
into a phase with pairs of neighboring Majoranas forming
Dirac fermions. At a mean field level, these Dirac energy
levels are either filled or empty as indicated in Fig. (2);
unfilled circles correspond to empty states. In addition to
these ground states two others occur, rotated by ⇡/2 with
Dirac fermions forming on horizontal links. For large
enough negative g, g < gc1 a symmetry-breaking phase
occurs with the Dirac fermions levels alternating filled
and empty as indicated in Fig. (2). As shown in Fig. (2),
the strongly coupled ordered phase is four-fold (eight-
fold) degenerate for large positive (negative) g.

III. TWO-LEG LADDER

A. Phase diagram with nearest-neighbor hopping

In this case the model can be converted into a particle
number conserving Dirac model by defining:

cm ⌘
�m,0 + i(�1)m�m,1

2
. (3.1)

Figure 2. (a) The symmetry-breaking pattern for two of
the four strong-coupling ground states of the two-dimensional
Majorana-Hubbard model for g > 0 on the square lattice pre-
dicted in [27] using mean field theory. The other two states
can be obtained by a ⇡/2 rotation. (b) Four of the eight
symmetry-breaking patterns of the mean-field strong-coupling
ground states predicted in [27] for g < 0. The other four states
can be obtained by a ⇡/2 rotation. Blue circles are the Majo-
rana modes, a bond between them indicates the combination
of the MZMs into a Dirac fermion. The larger circle on the
bond represent the occupation of the Dirac mode.

We combine the Majoranas on each vertical link to make
Dirac fermions. Thus

�m,0 = cm + c†m

�m,1 = (�1)mi(c†m � cm) (3.2)

The horizontal hopping term become:

H0 = 2it
X

m

[c†mcm+1 � c†m+1cm]. (3.3)

The vertical hopping term vanishes with periodic bound-
ary conditions in the y direction since �m,0�m,1 +
�m,1�m,0 = 0. The interaction term becomes:

Hint = 2g(2c†mcm � 1)(2c†m+1cm+1 � 1). (3.4)
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The	ladder	geometry	is	seen	to	favour forming	Dirac
fermions	on	vertical	bonds,	not	horizontal,	but	otherwise
we	get	perfect	confirmation	of	the	predicted	mean	field	
ground	states	at	strong	coupling.	On	the	other	hand,	
the	DMRG	results	indicate	several	mysterious	gapless	
phases	at	g<0	which	we	don’t	yet	understand:

10

interactions, as we see from Eq. (A10). Thus, this sym-
metry breaking operator is irrelevant for g > 0. On the
other hand, the symmetry preserving interactions lead to
the standard Umklapp term

 †
L@x 

†
L R@x R + h.c. / cos(4

p

⇡K�), (6.3)

of dimension d = 4K. This becomes relevant for su�-
ciently strong g, atK = 1/2, where a charge density wave
transntion occurs, corresponding to the usual Kosterlitz-
Thouless transition in XXZ spin chain at the Heisenberg
point.

The left-moving single fermion operator bosonizes as

 L / ei
p
4⇡�L (6.4)

at g = 0 where K = 1. Writing

� = �L + �R, ✓ = (�L � �R)/K, (6.5)

this becomes

 L / ei
p
⇡(��✓) = ei

p
⇡[(1+1/K)�L+(1�1/K)�R]/2 (6.6)

of dimension

d = (1/4)(K + 1/K). (6.7)

This gives d = 1/2 for free fermions, K = 1 and d = 5/8
at the KT point, K = 1/2. The equal time Green’s func-
tion for the fermion decays with exponent 2d: 1 for free
fermions and 5/4 at the KT point. The central charge is
c = 1 along the entire critical line including at the KT
point.

For g > gKT we expect a charge density wave. The
order parameter is

(�1)m(2c†m,0cm,0 � 1). (6.8)

However, when relating the above expression to the orig-
inal Majorana fermions, we have to take into account
the transformation (A8), which eliminates the factor
of (�1)m, when going from the new to the old Dirac
fermions so the order parameter reduces to i�em,0�

o
m,0 in

terms of the original Majoranas. We can thus write the
order parameter as

(�1)mh�z
m,0i =

i

2

3X

n=0

(�1)nh�m,n�m,n+1i. (6.9)

The expression above corresponds to the order of Fig.
(4). Conversely

(�1)mh�z
m,⇡i = i/2

3X

n=0

h�m,n�m,n+1i (6.10)

as we see from Eq. (A1), which does not break any sym-
metries.

Figure 8. (a) The phase diagram of the Majorana-Hubbard
chain. (b) The phase diagram of the two-leg Majorana Hub-
bard model with peiodic boundary conditions in the y di-
rection. (c) The phase diagram of the four-leg Majorana-
Hubbard ladder with periodic boundary conditions in the y
direction. The numerically computed values of the interaction
strength g at various phase transitions are shown fr hopping
t = 1. The interaction strength |g3| is expected to be very
large, but we have not been able to determine its value due to
the large correlation length of the gapped phase and strong
finite-size e↵ects in this regime.

VII. NUMERICAL PHASE DIAGRAM OF THE
FOUR-LEG LADDER

As discussed above, we expect gapped phases with cer-
tain symmetry breaking patterns at the two strongly
interacting regimes g/t ! ±1. The noninteracting
point is a critical phase with central charge c = 1, de-
scribed by a noninteracting Luttinger liquid. Motivated
by the results of the single chain, we expect transitions
between possibly several critical phases before reaching
the broken-symmetry gapped phases. On the positive g
side, however, our theoretical predictions support a single
Kosterlitz-Thouless transition from the Luttinger liquid
phase. In the chain, we had one (supersymmetric) transi-
tion on the positive g and two transitions on the negative
g-side. Our numerical studies suggest a similar phase di-
agram with one transition on the positive g and three

transitions on the negative g side. The first transition,
for, g < 0, is a Lifshitz transition to a critical phase with
central charge c = 3/2. It appears that there is a second
transition to another critical phase with central charge
c = 2 upon increasing the negative interaction strength,
then a transition to a critical phase with c = 1, and finally
a transition to the gapped phase at very strong negative
interactions. Our estimate of these phase transition are
shown in Fig. 8. An interesting feature of the four-leg
ladder is that unlike the the chain and the two-leg ladder
(and the 2D case), while gapped phases appear at strong
coupling, the gaps become smaller upon increasing |g and
the |g| ! 1 points are gapless.
We combined several numerical diagnostics in deter-



42

For	g>0	we	only	find	one	transition.		Mapping	into	complex
fermions	and	ignoring	interactions,	we	get	1	gapped	
complex	fermion	and	1	gapless	complex	fermion.		At	small	g,
we	may	integrate	out	the	gapped	mode.		Then	we	find	the
U(1)	breaking	interactions	are	irrelevant	and	the	U(1)	
preserving	interactions	are	of	standard	spinless Luttinger
liquid	form:	Umklapp term.
We	thus	predict	a	Kosterlitz-Thouless transition
into	a	gapped	phase	at	sufficiently	strong	g.	This	agrees	
well	with	DMRG	results.		In	the	2D	limit	we	expect	this	
transition	to	become	SUSY.



-the	Majorana-Hubbard	model	on	various	lattices	has	
rich	phase	diagrams
-Majoranas like	to	pair	up	to	form	complex	fermions	for	
strong	enough	coupling,	breaking	discrete	symmetries
-Supersymmetry	can	be	realized	in	both	1	and	2	dimensions

Conclusions
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