THERMODYNAMIC PARAMETERS OF A BOULWARE-DESER BLACK HOLE FROM FLUID-GRAVITY CORRESPONDENCE

Dylan Sutherland<sup>1\*</sup>, S. Shankaranarayanan<sup>2</sup>, Saurya Das<sup>1</sup>



1 = University of Lethbridge
2 = Indian Institute of
Technology Bombay
\* = Speaker



### PROBLEMS

- Many prospective theories of Quantum Gravity from several branches of Physics yet, test by which we can falsify them.
- The Schwarzchild Black Hole showed promise.
- Its failure must've been due to its universality.

## FLUID GRAVITY CORRESPONDENCE

• First developed independently first by Damour then by Thorne et al, both in the early 1980's.

• Damour showed that Einstein's equations, projected on a Black Hole event horizon, took the form of the Navier-Stokes equation for a relativistic 2D fluid residing on the horizon.

## FLUID/GRAVITY CORRESPONDENCE CONT.

When projected onto an event horizon surface, Einstein's equations take the form:

Compare with the Navier-Stokes Equation from fluid mechanics:

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho (\vec{v} \cdot \nabla) \vec{v} = -\nabla P + \eta \nabla^2 \vec{v} + \left( \zeta + \frac{\eta}{3} \right) \nabla (\nabla \cdot \vec{v})$$

As can be seen, the first equation shares the same form as the Navier-Stokes Equation for a fluid with the bulk viscosity as written in blue and with following constraints:

$$P = k_B \frac{T_H}{4} \qquad \qquad E = \left(\frac{D-2}{D-3}\right) \frac{A}{4} k_B T_H$$

### OUR APPROACH

- The Damour-Navier-Stokes equation and the results from Thorne are a great start but they are strictly macroscopic and their application is limited.
- To improve upon this this, we suggest working from the Fluctuation Dissipation of the microscopic degrees of freedom. Which, if functional, would provide a wider range of applicability

# CHARACTERISTICS OF THE FLUID

1. Black Hole event horizons seem to have a critical temperature due to its properties of universality.

2. For large horizon radii, the fluid degrees of freedom remain in their ground state.

Implies:

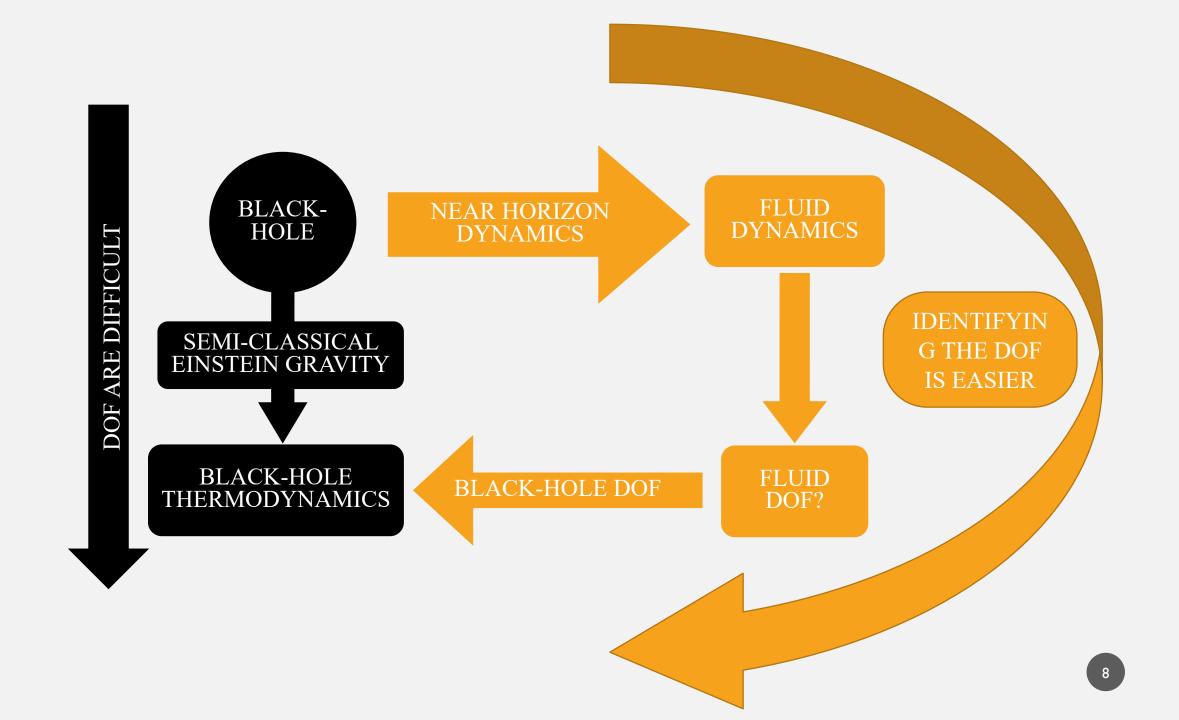
$$E = N_C \alpha_C T + N_N \alpha_N T$$
$$N_C \alpha_C + N_N \alpha_N = \frac{A}{3}$$

#### **BOSE GASES**

- Comprised of bosons with integer spin.
- Follows Bose-Einstein Statistics which governs gases comprised of noninteracting bosons.
- Forms a Bose-Einstein Condensate wherein all particles occupy the lowest energy level.

Examples:

- Photon Gas
- Helium-4



### GREEN-KUBO IN GENERAL RELATIVITY

$$\zeta = \left(\frac{1}{n}\right) \frac{1}{Ak_B T} \int_{-\infty}^{\infty} dt \sum_{a} \sum_{b} \langle J^{aa}(0) J^{bb}(t) \rangle$$

This yields:

$$\zeta = -\frac{P^2 A}{k_B T} \frac{\gamma^2 \beta^2}{\omega} \langle \delta N(0)^2 \rangle \quad (1)$$

### LANCZOS-LOVELOCK GRAVITY

10

$$S_{LL} = \int d^6 x [R + \lambda (R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma} + R_{\mu\nu\rho\sigma})]$$
  

$$GR \qquad extra$$

Second Order Equations of Motion

### THE BOULWARE-DESER BLACK HOLE

$$ds^{2} = -V^{2}(r)dt^{2} + V^{-2}(r)dr^{2} + r^{2}d\Omega_{4}^{2}$$

$$V^2(r) = 1 + \frac{r^2}{4\alpha} + \sigma \frac{r^2}{4\alpha} \sqrt{1 + \frac{16\alpha M}{r^4} + \frac{4\alpha\Lambda}{3}}$$

Our Interest

**Thermodynamic Quantities of the Boulware-Deser Black Hole** 

$$\begin{array}{ll} \mbox{Horizon Radius:} & r_h = \left(\frac{\omega + \sqrt{\omega^2 + 4\lambda^3}}{2}\right)^{1/3} - \left(\frac{2\lambda^3}{\omega + \sqrt{\omega^2 + 4\lambda^2}}\right)^{1/3} \\ & A = \frac{8}{3}\pi^2 r_h^4 & \omega^{2/3} = \left(\frac{3\Omega_4^{1/4}}{8\pi^2}\right)^{2/3} A_{GR}^{1/2} \\ \mbox{After a Taylor expansion in $^{\lambda}\!/_{\omega^{2/3}$, keeping 1st order terms:} \\ & A \approx A_{GR} - 4\lambda\Omega_4 \left(\frac{3\Omega_4^{1/4}}{8\pi^2}\right) A_{GR}^{1/2} & \mbox{Area} \\ \hline \\ & \mbox{Similarly,} \\ & E = E_{GR} + \frac{3\lambda}{2\pi}\Omega_4^{3/4} A^{1/4} \ \mbox{Energy} & P = P_{GR} + \frac{6\lambda}{16\pi} \left(\frac{\Omega_4}{A}\right)^{-3/4} \\ \hline \\ & \mbox{Pressure} \\ \hline \\ & T \approx T_{GR} - \frac{15\lambda}{2\pi} \left(\frac{A}{\Omega_4}\right)^{-3/4} \\ \hline \\ & \mbox{Temperature} \end{array}$$

12

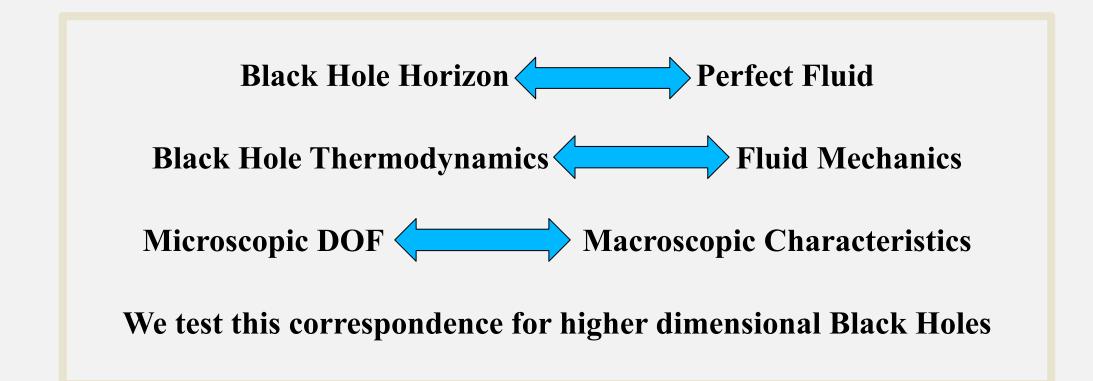
### GREEN-KUBO IN LANCZOS-LOVELOCK

$$\zeta = \left(\frac{1}{n}\right) \frac{1}{Ak_BT} \int_{-\infty}^{\infty} dt \sum_{a} \sum_{b} \langle J^{aa}(0) J^{bb}(t) \rangle$$

This yields:

$$\zeta = -\frac{P^2 A}{k_B T} \left[ \frac{\gamma_C^2 \beta_C^2}{\omega_C} \langle \delta N_C(0)^2 \rangle + \frac{\lambda^2 \Gamma^2}{4} \frac{\gamma_N^2 \beta_N^2}{\omega_N} \langle \delta N_N(0)^2 \rangle \right] \quad (1)$$

#### REVIEW



# CONCLUSION AND FUTURE WORK

- The horizon of a BD Black Hole seems lend itself to a fluid model, differing from the Schwarzchild Black Hole in that the fluid is not strictly a BEC; there are non-condensed elements.
- Of course, our job is not done we have yet to calculate the Bulk Viscosity exactly. We hope that this will provide an adequate test for Quantum Gravity theories.

# ACKNOWLEDGEMENTS

We would like to thank Mitacs, the Indian Institute of Technology Bombay, the University of Lethbridge, and the Natural Sciences and Engineering Research Council



- Swastik Bhattacharya and S. Shankaranarayanan, Physical Review, D 93, 064030 (2016).
- 2. J. L. L'opez, Swastik Bhattacharya, and S. Shankaranarayanan, Physical Review, D 94, 024029 (2016).
- 3. S. Shankaranarayanan, Gravity and the Quantum, Fundamental Theories of Physics 187, (2017).

### CALCULATING BULK VISCOSITY IN GR

$$\zeta = \left(\frac{1}{n}\right) \frac{1}{Ak_B T} \int_{-\infty}^{\infty} dt \sum_{a} \sum_{b} \langle J^{aa}(0) J^{bb}(t) \rangle$$
$$\zeta = \frac{1}{Ak_B T} \int_{-\infty}^{\infty} dt \langle F_{Th}^{(a)}(t), F_{Th}^{(b)}(0) \rangle \theta(-t)$$

With  $F_{Th} = P\delta A(t)\theta(-t)$ ,

$$\zeta = \frac{P^2 A}{k_B T} \int_{\infty}^{-\infty} dt \left\langle \delta A_{GR}(t), \delta A_{GR}(0) \right\rangle \theta(-t)$$

# CALCULATING BULK VISCOSITY IN GR CONT.

Using the constraints shown earlier,

$$\zeta = \frac{P^2 A}{k_B T} \int_{\infty}^{-\infty} dt \gamma_C^2 \beta_C^2 \langle \delta N_C(t), \delta N_C(0) \rangle \theta(-t)$$

Finally, taking a long wavelength limit,

$$\zeta = -\frac{P^2 A}{k_B T} \frac{\gamma^2 \beta^2}{\omega} \langle \delta N(0)^2 \rangle$$

# DAMOUR-NAVIER-STOKES EQUATION

$$R_{ab} - \frac{1}{2}g_{ab} + \Lambda g_{ab} = 8\pi T_{ab}$$

Geodesic Equation:  $l^a \nabla_a l_b = \kappa l_b$ 

With coordinates:  $l = \partial_t + v^A \partial_A$   $l^a = (1, v^A, 0)$ 

Thus, the metric becomes:

$$ds^{2} = q_{AB}(dx^{A} - v^{A}dt)(dx^{B} - v^{B}dt)$$
$$q_{ab} = g_{ab} + l_{a}k_{a} + l_{b}k_{a}$$

# DAMOUR-NAVIER-STOKES EQUATION

The contracted Codazzi Equation can be written:

$$R_{mn}l^m q_a^n = \left(\frac{1}{2}g_{ab} - \Lambda g_{ab} + 8\pi T_{ab}\right)l^m q_a^n$$

Which becomes:

$$8\pi T_{mA}l^m = (\partial_0 + v^B \partial_B)\omega_A + \partial_B \sigma_A^B - \partial_A \kappa - \frac{D-3}{D-2}\partial_A \theta$$

Equivalently:

$$\frac{D\Pi_A}{dt} = -\frac{\partial}{\partial x^A} \left(\frac{\kappa}{8\pi}\right) + 2\frac{1}{16\pi} \sigma^B_{A;B} - \left(\frac{D-3}{D-2}\right) \frac{1}{8\pi} \frac{\partial\theta}{\partial x^A} - l^a T_{aA}$$

## CALCULATING BULK VISCOSITY IN LL

$$\zeta = \left(\frac{1}{n}\right) \frac{1}{Ak_B T} \int_{-\infty}^{\infty} dt \sum_{a} \sum_{b} \langle J^{aa}(0) J^{bb}(t) \rangle$$
  
$$\zeta = \frac{1}{Ak_B T} \int_{-\infty}^{\infty} dt \langle F_{Th}^{(a)}(t), F_{Th}^{(b)}(0) \rangle \theta(-t)$$

With  $F_{Th} = P\delta A(t)\theta(-t)$ ,

$$\begin{aligned} \zeta &= \frac{P^2 A}{k_B T} \int_{\infty}^{-\infty} dt \left[ \left\langle \delta A_{GR}(t), \delta A_{GR}(0) \right\rangle \theta(-t) \right. \\ &+ \frac{\lambda^2 \Gamma^2}{4} \left\langle A_{GR}^{-1/2} \delta A_{GR}(t), A_{GR}^{-1/2} \delta A_{GR}(0) \right\rangle \theta(-t) \right] \end{aligned}$$

# CALCULATING BULK VISCOSITY IN LL CONT.

Using the constraints shown earlier,

$$\zeta = \frac{P^2 A}{k_B T} \int_{\infty}^{-\infty} dt \Big[ \gamma_C^2 \beta_C^2 \big\langle \delta N_C(t), \delta N_C(0) \big\rangle \theta(-t) \\ + \frac{\lambda^2 \Gamma^2}{4} \gamma_N^2 \beta_N^2 \big\langle \delta N_N(t), \delta N_N(0) \big\rangle \theta(-t) \Big]$$

Finally, taking a long wavelength limit,

$$\zeta = \frac{P^2 A}{k_B T} \Big[ \frac{\gamma_C^2 \beta_C^2}{\omega_C} \langle \delta N_C(0)^2 \rangle + \frac{\lambda^2 \Gamma^2}{4} \frac{\gamma_N^2 \beta_N^2}{\omega_N} \langle \delta N_N(0)^2 \rangle \Big]$$