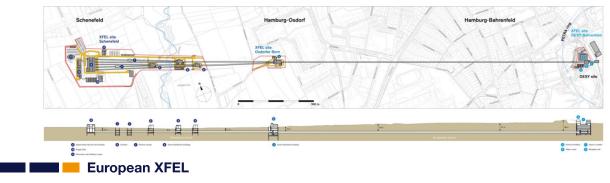


1

Management and Controls of In-Kind Contributions to the European XFEL facility

Sigrid Kozielski Safety and Radiation Protection Group (SRP)

Antonio Bonucci In Kind Contribution Manager


Main facts about the project

The European XFEL Facility in Hamburg is an applied research facility

- Generation of X-ray flashes: 27 000/s
- Superconducting linear accelerator for electrons (energy level 17.5 GeV)
- 3.4 km long machine in 5.8 km underground tunnels
- 3 sites above ground and 5 experimental stations (3 in the start-up)

Construction :

- Cost 1.2 B€ (2005)
- 12 countries participate in the construction through 21 institutes
- 48 Work Packages
- 78 in-kind contributions
- Lifetime 20 years 2016-2036

ITSF 2017 Vancouver

5,8 km of tunnels

Breakthrough at beam switchyard

Removing the cutter head ø 5.3m

End of underground construction was celebrated in June 2013 **European XFEL**

ITSF 2017 Vancouver

Sigrid Kozielski, Safety and Radiation Protection Group

Main tunnel is 2 km long

Utilities installed in accelerator tunnel


Floor laying

Vehicle for cryomodule transport

Sigrid Kozielski, Safety and Radiation Protection Group

Underground Injector building

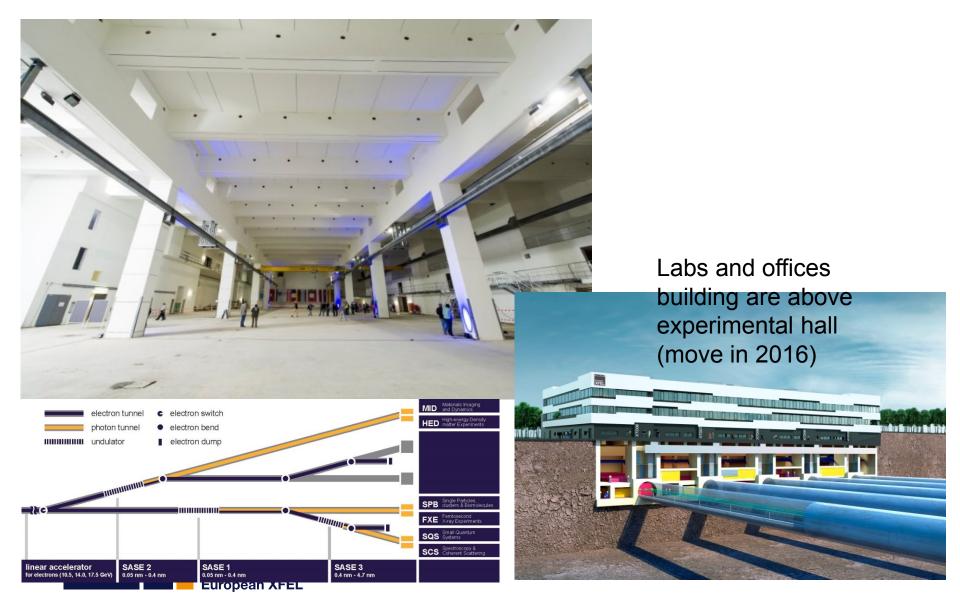
Oct. 2009

Underground injector. building: 7 levels, 38m

European XFEL

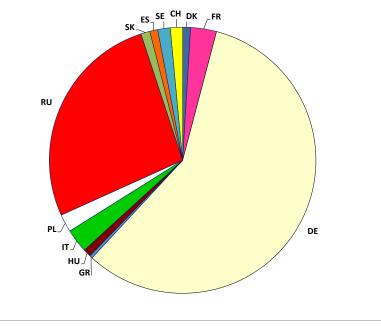
components

Electron gun

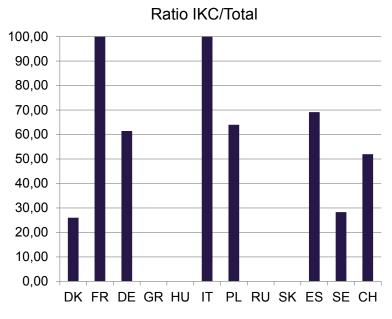


Main shaft

ITSF 2017 Vancouver

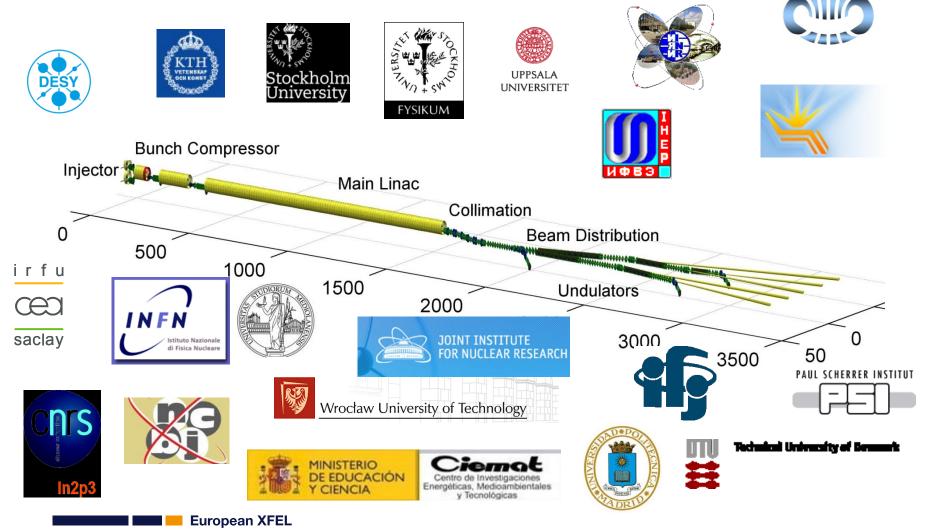

Sigrid Kozielski, Safety and Radiation Protection Group

Experimental Hall: 90 m x 50 m (height 14 m)



6

12 countries contribute to the European XFEL Facility


Distribution of total contributions

Each country contributes either in cash,

in-kind, or both to the construction phase.

Institutes contributing in-kind to the construction

Sigrid Kozielski, Safety and Radiation Protection Group

Overview of in-kind contributions

9 Countries 21 Institutes 78 IKCs 683 Milestones 585 M€ (2005)

Efforts by IKC Office

Prepare agreements Implement changes Validate milestones Follow-up and control Verify achievements

Status end 2017

- all IKCs allocated
- 416 Milestones completed
- 22 IKCs completed
- We are collecting all the documentation to consider completed the delivery

Main components delivered

- Super-conducting cavities: 800
- Cryostats: 100
- Warm magnets: 715
- Cold magnets: 100

Objectives of in-kind contributions for the construction phase

```
Budget of the European XFEL Facility:
In-Kind contributions ~ 50%
Cash ~ 50%
```

Reasons why IKCs are an attractive solution:

- For the contributing institute:
 - Implementing and developing its know-how
 - Local development
 - Image and reputation
- For the project:
 - Delegation of responsibilities (technical, management)
 - Delegation of risks (technical, costs)
 - Delegation of resources

Drawbacks of in-kind contributions

For the contributing institute :

- Technical risks
- Manufacturing risks
- Risk of not achieving expected performance
- Financial risks
- Human risks: loss of competences
- Risk of change of strategy by funding agency
- For the project:
 - Follow-up and control especially in safety and technical aspects can be more demanding than expected
 - For project groups and
 - ► For IKC office
- Other risks appear:
 - Failure to deliver on schedule, in quality and according to national safety standards
 - Assistance may require unforeseen effort

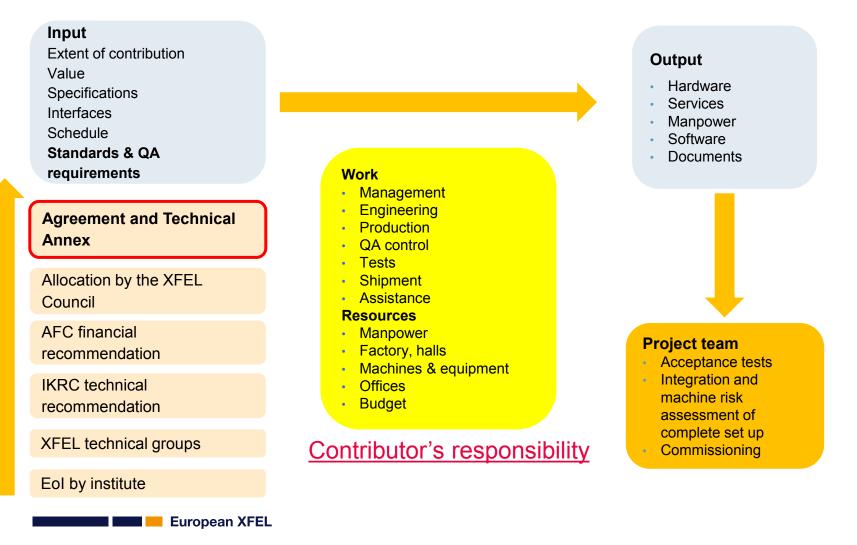
12

Work Packages in the construction phase

WPG1 Linac	WPG1 Linac	WPG2 Accelerator Subsystems	WPG4 Control & Operation	WPG5 Infrastructure	WPG3 Photon Beam System	WPG3 Photon Beam System	WPG6 Sites & Buildings
WP01	WP07	WP12	WP28	WP10	👻 WP71	WP74	WP31
RF System	Freq. Tuners	Warm magnet	Acc Control Sys.	AMTE	Undulators	X-Ray diagnostics	Sites & Civil Cons
Stefan Choroba	L. Lilje / A. Bosotti	Bernward Krause	Kay Rehlich	Bernd Petersen	Joachim Pflüger	Jan Grünert	H-J Christ
WP02	WP08	WP14	WP29	WP13	WP72	WP75	WP41
Low Level RF	Cold vacuum	Injector	Operab. & Reliab	Cryogenics	Ph. Fields Simul.	Detector Dev.	Site Lot 1
Holger Schlarb	Lutz Lilje	Klaus Flöttmann	NN	Bernd Petersen	Gianluca Geloni	Markus Kuster	H-J Christ
WP03	WP09	WP15	WP35	WP32	WP73	WP76	WP42
Acc. Modules	Cav. String Assy.	Bunch compress.	Radiation Safety	Survey & Align.	X-Ray Optics & Tr	DAQ & Control	Site Lot 2
O. Napoli / K. Jensch	B. Visentin A. Matheisen	Torsten Limberg	Norbert Tesch	Johannes Prenting	Harald Sinn	Chris. Youngmann	H-J Christ
WP04	WP11	WP16	WP36	WP33	WP78	WP81	WP43
SC Cavities	Cold Magnets	Lattice	General Safety	Tunnel Installation	Optical lasers	FXE Instr.	Site Lot 3
W. Singer P. Michelato	HD Brück / F. Toral	Winfried Decking	Andreas Hoppe	Norbert Meyners	Max Lederer	Christian Bressler	H-J Christ
WP05	WP46	WP17	WP38	Sec. WP34	WP79	WP82	WP44
Power Couplers	3.9 GHz System	St. e-b diagn.	Pers. Interlock	Utilities	Sample Environ.	HED Instr.	Site Engineering
W. Kaabi / WD Möller	E. Vogel / P. Pierini	Dirk Nölle	Brunhilde Racky	J-P. Jensen	Joachim Schulz	NN	H-J Christ
WP06		WP18	WP39	WP40	WP85	WP83	WP45
HOM Couplers		Spec. e-b diagn.	EMC	Info & Proc. Supp	SQS Instr.	MID Instr.	AMTF Hall
J. Sekutowicz / E. Plawski		Christopher Gerth	Herbert Kapitza	Lars Hagge	Michael Meyer	Anders Madsen	H-J Christ
		WP19			WP86	WP84	
DK		Warm vacuum			SCS Instr.	SPB Instr.	
FR		Sven Lederer			Andreas Scherz	Adrian Mancuso	
IT		WP20					
PL		Beam Dumps					
RU		Norbert Tesch					
ES 🔹		WP21					
SE		FEL Concepts					
сн 🕂		Mikhail Yurkov					

Tasks of the IKC controlling office

Assistance to the project management and to the administration:


- Follow-up of the technical progress at the various in-kind contributions
- Reporting to the management and associated committees
- Organize meetings of the In-Kind Review Committee
- Inform the controlling and finance group
- Close cooperation with the project teams in:
 - Preparation of the technical part of IKC agreement
 - Enforcement of engineering and safety standards and national safety regulations
 - Traceability of parts
 - Documentation
 - Technical validation of achievements at milestones
 - Acceptance tests

Tasks of the IKC controlling office

Assistance to the contributing Institute:

- Preparation of the contract (IKC Agreement)
- Preparation of quality plan
- Provision of safety standards and national safety requirements
- Validation of the achievements
- Solving difficulties: procurements, delays, etc..
- Maintain close relationship

Process of an IKC in the construction phase

Interaction with the contributor

Assist him from the beginning:

How to present his contribution (IKRC Committee)

How to prepare the documents (financial agreement and technical annex)

Assist him during the work

Procurements

Follow-up

Quality assurance

Milestones validation

Assist him at the end

Final acceptance

Final notification, appraisal

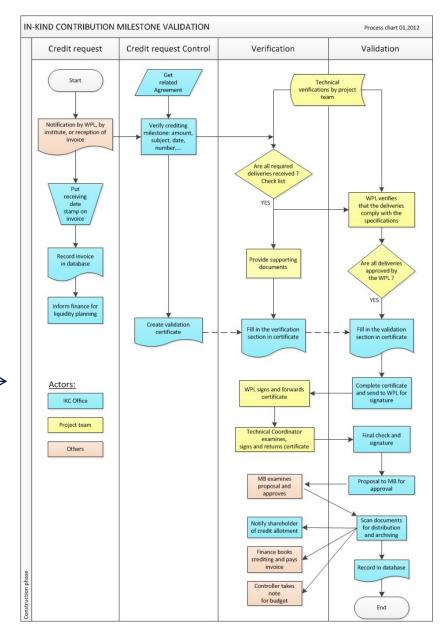
Treat him as a project partner but: the contributor must be controlled !!!

Monitor closely his progress with respect to plan

Make regular on-site visits

Control the documentation and traceability of parts

ITSF 2017 Vancouver


IKC follow-up: Validation of Milestone's achievement

- The progress of a contribution is monitored through specific contractual milestones detailed in the agreement:
 - o Milestone name, date expected, validation criteria
- About 580 milestones cover all IKCs of European XFEL

For each milestone,

when corresponding task is completed:

- Institute or project team → notifies IKC Office
- IKC Office prepares specific certificate
- Project team → evaluates the deliveries / criteria:
 - Documents
 - o Test reports
 - o Equipment
 - \rightarrow gives his approval of satisfactory achievement
- IKC Office:
 - → presents for signatures the certificate to validate the milestone
 - ightarrow notifies the shareholder and accounts credit of value

18₈

IKC follow-up: Certificate of Validation (example)

Certificate of validation of IKC milestone Phase 4 PL05 for WP10

European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany

Contributing Institute:	Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences ("IFJ-PAN") ul. Radzikowskiego 152, 31-342, Kraków, Poland			
Shareholder	NCBJ Swierk	Poland		
Contract	PL05	Tests of cavities and cryomodules in the AMTF Hall		
Project leaders	Andrzej Kotarba			
Work package and	WP10 – AMTF		WPG5	
responsible person	Bernd Petersen		Markus Hüning	
Reference document	IKC Agreement European XFEL – IPJ - IFJ-PAN for WP10 of 16 December 2010 Technical Annex 10-2 to ACA DESY-IFJ-PAN for WP10 of 16 December 2010			

Terms of references

Verification an analism

Value of the IKC	9 368 309 € (in 2005 prices) for Option B			- Art. 5.1 of the agreement - Letter of notification of
Milestone	Phase 4: 1 st cavitie	Option B (12 July 2011) Art. 5.3 of the agreement		
Expected date	October 2013	and letter of notification		
Crediting allotment	1 125 000 €	Ownership transfer	Yes	dated 21/12/2011

verification operat	lions	Dates
Verification steps	Test procedures documented and approved.	
Detail of verification	Re_FW_IFJ PAN milestones4.pdf 320cavitiesreports.p	odf
	TUIOC01_TALK_AMTF_Swierblewski,pdf Linac14_T	HPP021_poster.pdf
Completeness of verification	Verification complete: all requested items and documents	s are delivered
Verified by: Name and signature	B. Petersen	12-10-26. 9-14

Validation involves the approval and signatures by:

- Technical team
- Technical coordinator
- ➢ IKC Office
- Administrative Director of European XFEL GmbH

Management Board gives a formal approval Shareholder's account is credited Shareholder is notified Supporting documentation is uploaded in database

Validation operati	ons	Dates
Validation	WPL approves of the test procedures.	Sha_
Completeness of validation	All validation steps were completed.	
Validation by: Name and signature	B. Petersen	15 / Cle - 26. 9.17

Approval by the Accelerator Consortium Coordinator

Approved by H. Weise Signature and date

29/9/14

Conclusions

Milestone	Milestone Phase 4 is validated			
Crediting allotment	The amount of 1 125 000 € can be credited to NCBJ.			
Approval by the IKC Coordinator	Milestone Phase 4 is completed according to criteria	20/9/14		
Date and signature by the Administrative Director	The Management Board approves of the crediting to	ncbj. 21 <i>1</i> 0/2014		
\mathcal{C}				

Specific issues of in-kind contributions

Coordination of several different actors in space and time needs a big effort:

Technical difficulties:

- Different environment (procedures, language, CAD software, units...)
- Different standards (technical and safety)
- Different raw materials (same quality ?)
- Different style of management
- Follow-up is difficult

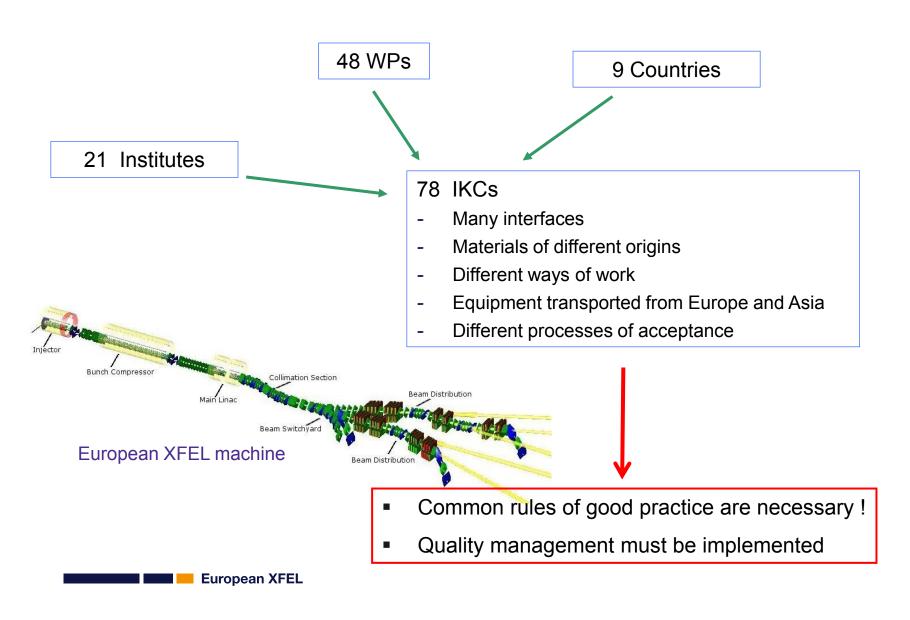
Financial:

- Budget is in current prices, but IKCs are in 2005 prices
- Controller takes note of completed IKC milestones
- Custom taxes for equipment coming from outside EU

Specific issues of in-kind contributions

Coordination of several different actors in space and time needs a big effort:

Logistics:


- Transports
- On-time delivery and temporary storage
- Installation must fit with global integration plan

Legislation:

- National regulations are different
- Procurement rules can be different

Quality management issues

Examples of difficulties encountered (Design and manufacturing)

- Difficulties of detailed design underestimated
 - Very often the effort or time necessary for detailed design by contributor is underestimated critical delays
 - Solution: spend more time in the evaluation of design effort (external reviewers, expert panel...)
- Approval by project is too long
 - Too many stakeholders delay approval of design by contributor (subjects with many interfaces) resulting that manufacturing is delayed due pending approvals
 - Solution: Set up approval process in a way to avoid delays
- Raw material or special component specified in IKC contract is not available at the contributor
 Look for local equivalent, or
 - Buy the material or component and send it to the contributing institute (shift from IKC to cash)
- Loss of competences (example: qualified welders), or failure to produce equipment
 - IKC must be re-allocated to another actor, or
 - Equipment must be contracted to industry

Examples of difficulties encountered (Schedule and quality)

Delayed achievements

- Contributor does not deliver on-time hence delay of whole project
 Preventive actions:
 - ► Define precise responsibilities (agreements and internal provisions)
 - Close follow-up and reporting
 - Risk analysis (think of plan B in case of high risk)
 - Corrective actions:
 - Provide assistance to the contributor to find a solution
 - ► Decide on an alternative

Default in quality

- Equipment delivered does not satisfy the specified performance and safety standard
 Preventive actions:
 - Design review before start of production
 - Close follow-up and reporting
 - ► Risk analysis
 - Corrective action:
 - ► Provide assistance to the contributor to find a solution

Top 10 Dos and Don'ts

Do

- Consider contributor as project partner
- Define precisely what is expected
- Define specific goals of achievements
- Share important project info
- Define precisely acceptance criteria
- Visit regularly contributors
- Provide assistance in solving difficulties
- Plan the unexpected (risk analysis)
- Verify completeness of documentation
- Appraise value of accomplishments

Don't

- Change requirements repeatedly
- Underestimate difficulties of design
- Develop conflictual relationship
- Let a contributor work without a signed agreement
- Consider contributor as a vendor
- Discredit contributor's know-how
- Hide important project info
- Ignore help request or warning signals of problem
- Believe or accept anything without verifying
- Delay unduly acceptance of achievements

Conclusions

- Management and control of IKCs need significant efforts (technical, safety & administration)
- Precise processes must be established before start
- Define precise responsibilities, deliverables, and criteria of acceptance for each IKC
- Contributors must be treated as project partners (share info, reviews, dialogue)
- Be prepared, think of the unexpected
- IKCs management involve all groups in the project including the advise of safety engineers