Production and Reacceleration of $^{112}\mbox{In}$ with the Texas A&M Light Ion Guide and Charge-Breeding ECR

B.T. Roeder, F. Abegglen, J. Arje, G.J. Kim, D.P. May, A. Saastamoinen, G. Tabacaru, S. Yennello

Cyclotron Institute, Texas A&M University, College Station, TX, USA, 77843

Last year, the first re-accelerated rare isotope beam (RIB) made with the Light Ion Guide (LIG) and Charge-Breeding ECR (CB-ECR) at the Cyclotron Institute at Texas A&M University (TAMU) was produced. The rare isotope beam, 112 In, was made with the 114 Cd(p,3n) reaction using 28 MeV protons from the TAMU K150 cyclotron. The reaction products were stopped in He gas and extracted into a long Sextupole Ion Guide (SPIG). The SPIG transported the ions directly into the CB-ECR where they were charge-bred to 112 In $^{21+}$. This charge state, which is a close charge-to-mass analog with 16 O $^{3+}$, was then injected into the TAMU K500 cyclotron for beam purification and acceleration to 14 MeV/u. The resulting re-accelerated beam was identified with the MARS spectrometer and associated silicon detectors. Overall, a rate of about 100 p/s for the 112 In was observed at the focal plane. In addition, a similar background rate was also present. We have determined this background is arising from alloys and contamination in the CB-ECR components.

In my presentation, I plan to show results obtained from our test experiment to reaccelerate the ¹¹²In. I also plan to present about other beams we have tried to date, while attempting to find ways to reduce or eliminate the background from the CB-ECR components.