

Superallowed Fermi ß Decay

Two decades of fundamental research at ISAC

Gwen Grinyer

On behalf of everyone at ISAC and 20 amazing years!

Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada Gwen.Grinyer@uregina.ca

1 Superallowed Decay Studies

• Powerful technique to study nuclear structure

$$\begin{split} \mathbf{\beta}^{-} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z+1} Y_{N-1} + e^{-} + \overline{\nu_{e}}, \\ & \text{neutron} \longrightarrow \text{proton} \\ \mathbf{\beta}^{+} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z-1} W_{N+1} + e^{+} + \nu_{e}. \\ & \text{proton} \longrightarrow \text{neutron} \end{split}$$

• Powerful technique to study nuclear structure

$$\begin{split} \mathbf{\beta}^{-} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z+1} Y_{N-1} + e^{-} + \overline{\nu_{e}}, \\ & \text{neutron} \longrightarrow \text{proton} \\ \mathbf{\beta}^{+} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z-1} W_{N+1} + e^{+} + \nu_{e}. \end{split}$$

Momentum conservation & selection rules:

 $\overrightarrow{J}_{P} = \overrightarrow{J}_{D} + \overrightarrow{L} + \overrightarrow{S}$

Momentum

$$\pi_{\rm P} = \pi_{\rm D} (-1)^{\rm L}$$

Parity

3 Superallowed Decay Studies

• Powerful technique to study nuclear structure

$$\begin{split} \mathbf{\beta}^{-} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z+1} Y_{N-1} + e^{-} + \overline{\nu_{e}}, \\ & \text{neutron} \longrightarrow \text{proton} \\ \mathbf{\beta}^{+} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z-1} W_{N+1} + e^{+} + \nu_{e}. \end{split}$$

proton \longrightarrow neutron

Momentum conservation & selection rules:

 $\stackrel{\rightarrow}{}_{\mathsf{P}} \stackrel{\rightarrow}{=} \stackrel{\rightarrow}{}_{\mathsf{D}} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\mathsf{L}} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\mathsf{S}}$

$$\pi_{\rm P} = \pi_{\rm D} (-1)^{\rm L}$$

Momentum

Parity

- Allowed decays (L=0, $\Delta \pi$ =no)
 - Forbidden decays (L=1,2,3,...)
- Fermi decays (S=0)
 - Gamow-Teller decays (S=1)

• Powerful technique to study nuclear structure

$$\boldsymbol{\beta}^{-} \xrightarrow{A}{Z} X_{N} \rightarrow \xrightarrow{A}{Z+1} Y_{N-1} + e^{-} + \overline{\nu_{e}},$$

neutron \longrightarrow proton

$$\boldsymbol{\beta^+} \quad {}^{A}_{Z}X_N \quad \to \quad {}^{A}_{Z-1}W_{N+1} + e^+ + \nu_e.$$

proton \longrightarrow neutron

Momentum conservation & selection rules:

 $\stackrel{\rightarrow}{\textbf{J}}_{\textbf{P}} \stackrel{\rightarrow}{=} \stackrel{\rightarrow}{\textbf{J}}_{\textbf{D}} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\textbf{L}} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\textbf{S}}$

$$\pi_{\rm P} = \pi_{\rm D} (-1)^{\rm L}$$

Momentum

```
Parity
```

- Super allowed Fermi decays (L=0, $\Delta \pi$ =no)
 - Allowed and pure Fermi decay (no GT)
 - **Decays between** isobaric analog states (IAS)
 - States have identical wave functions
 - Isospin symmetry (neutrons = protons)

Half-lives and *ft* values

B.Singh et al. Nucl. Data Sheets 84, 487 (1998)

Case	J ^π (P→D)	Classification	T _{1/2}	Fraction
¹⁸ N→ ¹⁸ C	1-→1-	Allowed (GT&F)	624 ms	64%
⁶ He→ ⁶ Li	0⁺→1⁺	Allowed (GT only)	807 ms	
¹⁰ C→ ¹⁰ B	0⁺ →0⁺	Allowed (F only)	19 s	1%
³⁸ Cl→ ³⁸ Ar	2⁻→2⁺	1 st Forbidden	37 min	33%
³⁶ Cl→ ³⁶ Ar	2⁺ →0⁺	2 nd Forbidden	3 × 10 ⁵ years	1%
⁴⁰ K→ ⁴⁰ Ca	4-→0+	3 rd Forbidden	1 × 10 ⁹ years	0.1%
⁵⁰ V→ ⁵⁰ Cr	6⁺→2⁺	4 th Forbidden	1 × 10 ¹⁷ years	0.1%

Half-lives and ft values

B.Singh et al. Nucl. Data Sheets 84, 487 (1998)

Case	J ^π (P→D)	Classification	T _{1/2}	Fraction
¹⁸ N→ ¹⁸ C	1-→1-	Allowed (GT&F)	624 ms	64%
⁶ He→ ⁶ Li	0⁺→1⁺	Allowed (GT only)	807 ms	
¹⁰ C→ ¹⁰ B	0+ →0+	Allowed (F only)	19 s	1%
³⁸ Cl→ ³⁸ Ar	2⁻ →2⁺	1 st Forbidden	37 min	33%
³⁶ Cl→ ³⁶ Ar	2⁺ →0⁺	2 nd Forbidden	3 × 10 ⁵ years	1%
⁴⁰ K→ ⁴⁰ Ca	4- →0+	3 rd Forbidden	1 × 10 ⁹ years	0.1%
⁵⁰ V→ ⁵⁰ Cr	6⁺→2⁺	4 th Forbidden	1 × 10 ¹⁷ years	0.1%

• The *ft* value is a convenient way to characterize nuclear β decay

7 Superallowed Decay Studies

• Two major simplifications to the *ft* values for superallowed decays

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{g^2 |M_{fi}|^2}$$

R.P.Feynman and M.Gell-Man PR 109, 193 (1958)

- Two major simplifications to the *ft* values for superallowed decays
 - We assume the strength is universal (Conserved Vector Current hypothesis)

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{g^2 |M_{fi}|^2}$$

g = G_v = 1.13621 x 10^{-5} \, \mathrm{GeV^{-2}}

CVC Hypothesis Fermi strength is *nucleus independent*

R.P.Feynman and M.Gell-Man PR 109, 193 (1958)

- Two major simplifications to the *ft* values for superallowed decays
 - We assume the strength is universal (Conserved Vector Current hypothesis)
 - Matrix element is a trivial isospin operator (transforms protons to neutrons)

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{g^2 |M_{fi}|^2}$$
(For T = 1 decays)
g = G_V = 1.13621 x 10⁻⁵ GeV⁻²
(N_F|² = 2
(N_F|² = 2
(SVC Hypothesis
Fermi strength is nucleus independent

R.P.Feynman and M.Gell-Man PR 109, 193 (1958)

- Two major simplifications to the *ft* values for superallowed decays
 - We assume the strength is universal (Conserved Vector Current hypothesis)
 - Matrix element is a trivial isospin operator (transforms protons to neutrons)

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{g^2 |M_{fi}|^2} = \text{constant ?}$$

$$g = G_V = 1.13621 \times 10^{-5} \text{ GeV}^{-2} \qquad |M_F|^2 = 2$$

$$(For T = 1 \text{ decays}) = |M_F|^2 = 2$$

$$(K = Super allowed) = 10^{-5} \text{ GeV}^{-2} = 10^{-5} \text{ GeV}^{-2} = 10^{-5} \text{ GeV}^{-2}$$

Fermi strength is nucleus independent (to extent that isospin valid)

- If isospin symmetry were perfect and if CVC were valid...
 - The *ft* value of any superallowed decay would be nucleus independent!

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed *ft* values
 - Range from 3038 s to 3050 s (0.4%)
 - Higher-order effects (theory)

I.S. Towner and J.C.Hardy PRC 66, 035501 (2002)

I.S. Towner and J.C.Hardy PRC 66, 035501 (2002)

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed *ft* values
 - Range from 3038 s to 3050 s (0.4%)
 - Higher-order effects (theory)
- Isospin symmetry is not exact
 - Broken by charge dependent forces

$$|M_F|^2 = 2(1 - \delta_C)$$

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed *ft* values
 - Range from 3038 s to 3050 s (0.4%)
 - Higher-order effects (theory)
- Isospin symmetry is not exact
 - Broken by charge dependent forces

 $|M_F|^2 = 2(1 - \delta_C)$

- Corrected Ft values
 - Validation of the CVC hypothesis
 - Constraint on theory and "new physics"

15 Superallowed Decay Studies

- 4π gas counter and fast tape system
 - **Collect data in cycles:** beam on, off, move, count

G.C.Ball et al. PRL 86, 1454 (2001)

- 4π gas counter and fast tape system
 - **Collect data in cycles:** beam on, off, move, count
- Protons (10 μA) on a Nb target @ ISAC
 - ⁷⁴Rb intensity ~ 4400 ions/s
 - ⁷⁴Ga contaminant ($T_{1/2} = 8$ min)

G.C.Ball et al. PRL 86, 1454 (2001)

- 4π gas counter and fast tape system
 - **Collect data in cycles:** beam on, off, move, count
- Protons (10 μA) on a Nb target @ ISAC
 - ⁷⁴Rb intensity ~ 4400 ions/s
 - ⁷⁴Ga contaminant ($T_{1/2} = 8$ min)
- Single run ~ 4x10⁵ counts (many cycles)
 - Statistical precision: ± 0.15 %

G.C.Ball et al. PRL 86, 1454 (2001)

18 Superallowed Decay Studies

- 4π gas counter and fast tape system
 - **Collect data in cycles:** beam on, off, move, count
- Protons (10 μA) on a Nb target @ ISAC
 - ⁷⁴Rb intensity ~ 4400 ions/s
 - ⁷⁴Ga contaminant ($T_{1/2} = 8$ min)
- Single run ~ 4x10⁵ counts (many cycles)
 - Statistical precision: ± 0.15 %
- Weighted average of 38 runs:

 $T_{1/2}$ (⁷⁴Rb) = 64.761 ± 0.031 ms

• Precision: ± 0.05% (16x improvement!)

G.C.Ball et al. PRL 86, 1454 (2001)

- 4π gas counter and fast tape system
 - **Collect data in cycles:** beam on, off, move, count
- Protons (10 μA) on a Nb target @ ISAC
 - ⁷⁴Rb intensity ~ 4400 ions/s
 - ⁷⁴Ga contaminant ($T_{1/2} = 8$ min)
- Single run ~ 4x10⁵ counts (many cycles)
 - Statistical precision: ± 0.15 %
- Weighted average of 38 runs:

 $T_{1/2}$ (⁷⁴Rb) = 64.761 ± 0.031 ms

- Precision: ± 0.05% (16x improvement!)
- First ever Letter from ISAC!
- Probably the first ever scientific publication!

G.C.Ball et al. PRL 86, 1454 (2001)

A.Piechaczek et al. PRC 67, 051305R (2003)

Liaht Guide BC-403 Tape Hollow Light Guide Si(Li) Ge -Si(Li) **NE 102A** Ion Beam 5000 ⁷⁴Rb 511 4000 456 3000 **Only 2.5** 2000 per 1000 decays! Counts/keV 1000 0 420 440 460 480 500 520 540 560 400 ⁷⁴Rb 300 1198 ⁷⁴Rb ⁷⁴Rb 1233 200 1286 100 0 1160 1180 1200 1220 1240 1260 1280 Energy (keV)

• LSU, TRIUMF spectroscopy station

- Fast tape, HPGe, scintillators and Si(Li)
- Most decays are ground state to ground state
 - Search for extremely weak γ ray transitions
 - Will never find them all = pandemonium!

A.Piechaczek et al. PRC 67, 051305R (2003)

- LSU, TRIUMF spectroscopy station
 - Fast tape, HPGe, scintillators and Si(Li)
- Most decays are ground state to ground state
 - Search for extremely weak γ ray transitions
 - Will never find them all = pandemonium!
- Most unobserved intensity feeds low lying states
 - These states acts like a funnel or collectors

A.Piechaczek et al. PRC 67, 051305R (2003)

• LSU, TRIUMF spectroscopy station

- Fast tape, HPGe, scintillators and Si(Li)
- Most decays are ground state to ground state
 - Search for extremely weak γ ray transitions
 - Will never find them all = pandemonium!
- Most unobserved intensity feeds low lying states
 - These states acts like a funnel or collectors
- Branching ratio of ⁷⁴Rb at GPS

BR* (⁷⁴Rb) = 0.5 ± 0.1 %

Sum of *all*

23 Superallowed Decay Studies

Sum of all

others

A.Piechaczek et al. PRC 67, 051305R (2003)

LSU, TRIUMF spectroscopy station

- Fast tape, HPGe, scintillators and Si(Li)
- Most decays are ground state to ground state
 - Search for extremely weak γ ray transitions
 - Will never find them all = pandemonium!
- Most unobserved intensity feeds low lying states
 - These states acts like a funnel or collectors
- Branching ratio of ⁷⁴Rb at GPS

BR* (⁷⁴Rb) = 0.5 ± 0.1 %

 $100\% - BR* (^{74}Rb) = 99.5 \pm 0.1\%$ Superallowed

- Precision: ± 0.1%
- First measurement ever of the ⁷⁴Rb BR!

- Can improve further with higher efficiency!
 - Higher statistical yield and weak transitions
 - Reduces statistical and model uncertainties!

R.Dunlop et al. PRC 88, 045501 (2013)

8π spectrometer (2002 – 2013)

- Can improve further with higher efficiency!
 - Higher statistical yield and weak transitions
 - Reduces statistical and model uncertainties!
- Example: ⁷⁴Rb with the 8π spectrometer
 - Total of 8.2x10⁸ detected ⁷⁴Rb decays!
 - Observed 58 γ-ray transitions (10 previously)

R.Dunlop et al. PRC 88, 045501 (2013)

- Can improve further with higher efficiency!
 - Higher statistical yield and weak transitions
 - Reduces statistical and model uncertainties!
- Example: ⁷⁴Rb with the 8π spectrometer
 - Total of 8.2x10⁸ detected ⁷⁴Rb decays!
 - Observed 58 γ-ray transitions (10 previously)
- Branching ratio of ⁷⁴Rb

BR (⁷⁴Rb) = 99.545 ± 0.031 %

- Precision: ± 0.03%
- Factor of 3 improvement!

R.Dunlop et al. PRC 88, 045501 (2013)

8π spectrometer (2002 – 2013)

- Can improve further with higher efficiency!
 - Higher statistical yield and weak transitions
 - Reduces statistical and model uncertainties!
- Example: ⁷⁴Rb with the 8π spectrometer
 - Total of 8.2x10⁸ detected ⁷⁴Rb decays!
 - Observed 58 γ-ray transitions (10 previously)
- Branching ratio of ⁷⁴Rb

BR (⁷⁴Rb) = 99.545 ± 0.031 %

- Precision: ± 0.03%
- Factor of 3 improvement!
- Next: GRIFFIN (10x more efficiency)
 - Experiment on ⁶²Ga next week (S1518)!

R.Dunlop *et al.* **PRC 88, 045501 (2013)**

8π spectrometer (2002 – 2013)

GRIFFIN (2015 – present)

Q-value (mass) of ⁷⁴Rb at TITAN

- Penning trap mass spectrometry
 - Trap charged ions in a magnetic field B
 - Deduce mass from cyclotron frequency v_c

Q-value (mass) of ⁷⁴Rb at TITAN

- Penning trap mass spectrometry
 - Trap charged ions in a magnetic field B
 - Deduce mass from cyclotron frequency v_c
- How to improve the precision ($\delta m/m$)
 - B use a stronger magnetic field
 - T increase excitation time
 - N more statistics
 - q use highly charged ions

Q-value (mass) of ⁷⁴Rb at TITAN

- Penning trap mass spectrometry
 - Trap charged ions in a magnetic field B
 - Deduce mass from cyclotron frequency v_c
- How to improve the precision ($\delta m/m$)
 - B use a stronger magnetic field
 - T increase excitation time
 - N more statistics
 - q use highly charged ions
- Mass excess of ⁷⁴Rb at TITAN

ME (⁷⁴Rb) = $-51916.5 \pm 6.0 \text{ keV}$

- Precision: ± 0.01% (8⁺ charge state)
- Good agreement with ISOLTRAP
- First ever charge-bred rare-isotope mass!

Superallowed *ft* values (status today)

J.C.Hardy and I.S. Towner PRC 91, 025501 (2015)

33 Superallowed Decay Studies

- Method developed by Denys Wilkinson
 - Pioneer in superallowed Fermi β decays
 - Long time TRIUMF visitor and colleague

G.F.Grinyer et al. NIMA 622, 236 (2010)

Denys Wilkinson (1922 – 2016)

"... a breaker of stones on an old road to a not yet clearly marked destination."

Thornton Wilder – The Eighth Day

- Method developed by Denys Wilkinson
 - Pioneer in superallowed Fermi β decays
 - Long time TRIUMF visitor and colleague
- Model dependencies for δ_c too large
 - How to determine which are correct?

G.F.Grinyer et al. NIMA 622, 236 (2010)

- Method developed by Denys Wilkinson
 - Pioneer in superallowed Fermi β decays
 - Long time TRIUMF visitor and colleague
- Model dependencies for δ_c too large
 - How to determine which are correct?
- Wilkinson: Don't need a model for δ_c
 - Extrapolate *ft* values to Z = 0

G.F.Grinyer et al. NIMA 622, 236 (2010)

- Method developed by Denys Wilkinson
 - Pioneer in superallowed Fermi β decays
 - Long time TRIUMF visitor and colleague
- Model dependencies for δ_c too large
 - How to determine which are correct?
- Wilkinson: Don't need a model for δ_c
 - Extrapolate *ft* values to Z = 0
- With ⁶²Ga and ⁷⁴Rb now known...

Ft (TH) = $3072.1 \pm 0.8 \text{ s}$ World average 2009 Ft (W) = $3071.5 \pm 1.4 \text{ s}$ Wilkinson 2009

- Agrees with sophisticated theories!
- This was never the case in the past!

G.F.Grinyer *et al.* NIMA 622, 236 (2010)

37 Superallowed Decay Studies

• Letter from Denys Wilkinson (April 2009)

18th April 2009

Dear Dr Griniger

tchanh son for som letter of 10th April with its accompanying Vud - paper that arrive here only hodowy. I have read the paper with considerable interest and complement son upon its detail and care

Parhaps, with your Eq. (20) and the convergences of the complementary approaches to the SNE, c - problem, we cruned now call it a day -- but that sentiment may just 20 a consequence of my anticipy.

De was a pleasare to meet you last September at TRIUME. I shall be had again his year (Ict bright - 27th September) for my annual summer migration and it wind De nice of our putus overe to work again.

> With kind worker Dorug withunon

G.F.Grinyer *et al.* NIMA 622, 236 (2010)

39 Superallowed Decay Studies

Gwen Grinyer, TRIUMF, 21 August 2019

Wilkinson's Technique

• Letter from Denys Wilkinson (April 2009)

18th April 2009

Dear Dr Grinigen

tchank son for som letter of 10th April with its accompanying Vud - paper that arrive here only boday. I have read the paper with considerable whereast and complement son upon its detail and care

Parhaps, with some Eq. (20) and the convergences of the complementary approaches to the SNE, c - problem, we cruned now call it a day -- but that sentiment may just 20 a consequence of my anticipity.

Do was a pleasare to meet you last September at TRIUME. I shall se had again his year (Ict Druguet - 27th September) for my annual summer migration and it wind se nice of our putres over to work again.

> With kind womes Derug withunoir

"Perhaps, with the convergence of the complementary approaches to the $\delta_{NS,C}$ problem we should now call it a day...

Denys Wilkinson – 18th April 2009

G.F.Grinyer et al. NIMA 622, 236 (2010)

G.F.Grinyer et al. NIMA 622, 236 (2010)

Letter from Denys Wilkinson (April 2009)

18th April 2009

Dear Dr Griniger

thank you for som letter of 10th April with its accompanying Vod - paper that arrive here only boday. I have read the paper with considerable whereast and complement you apon its detail and care

Parhaps, with some Eq. (20) and the convergence of the complementary approaches to the Swe, c-problem, we cruned now call it a day -- Let that sentiment may just so a consequence of my anticipy.

Do was a pleasare to meet you last September at TRIUME. I shall be had again his year (Ict bright - 27th September) for my annual summer migration and it wind so nice of our putus over to work again.

> With kind womes Derug withunoir

"Perhaps, with the convergence of the complementary approaches to the $\delta_{NS,C}$ problem we should now call it a day...

... but that sentiment may just be a consequence of my austerity."

Denys Wilkinson – 18th April 2009

- We have accomplished so much in 20 years!
 - I only had time for a few quick highlights
 - Fully biased by my own experiences!

- We have accomplished so much in 20 years!
 - I only had time for a few quick highlights
 - Fully biased by my own experiences!
- TRIUMF is *unique*
 - Half-life measurements
 - Branching ratios
 - Q-values
 - Charge Radii
 - Nuclear theory

- We have accomplished so much in 20 years!
 - I only had time for a few quick highlights
 - Fully biased by my own experiences!
- TRIUMF is unique
 - Half-life measurements
 - Branching ratios
 - Q-values
 - Charge Radii
 - Nuclear theory
- Science crosses disciplines
 - GPS, 8π and GRIFFIN
 - TITAN
 - Laser spectroscopy
 - Beam development/operations
 - Theory group

14

10**C**

- We have accomplished so much in 20 years!
 - only had time for a few quick highlights
 - Fully biased by my own experiences!
- Training of HOP
 - 27 scientific publications (8 PRL)
 - 12 theses (7 MSc, 5 PhD)

- We have accomplished so much in 20 years!
 - I only had time for a few quick highlights
 - Fully biased by my own experiences!
- Training of HQP
 - 27 scientific publications (8 PRL)
 - 12 theses (7 MSc, 5 PhD)
- Formed new collaborations
 - GANIL and CENBG (France)
 - ISOLDE (Cern)
 - iThemba (S. Africa)
 - Reaction studies (Munich)
 - Nuclear Theory

- We have accomplished so much in 20 years!
 - I only had time for a few quick highlights
 - Fully biased by my own experiences!
- Training of HQP
 - 27 scientific publications (8 PRL)
 - 12 theses (7 MSc, 5 PhD)
- Formed new collaborations
 - GANIL and CENBG (France)
 - ISOLDE (Cern)
 - iThemba (S. Africa)
 - Reaction studies (Munich)
 - Nuclear Theory
- And lots of fond memories
 - Amazing results and even more amazing people!

38mK

26m**∆**

²²Mg

¹⁸Ne

140

10**C**

Stay Tuned for More!

Thank you for your attention!

Special thanks to:

Gordon Ball, Ania Kwiatkowski, Carl Svensson, John Behr and Kyle Leach And everyone at ISAC for 20 years of science!

47 Superallowed Decay Studies