ALPHA, the Trapped Antihydrogen Experiment: Status and Prospects

Andrea Capra

TRIUMF on behalf of the ALPHA collaboration

Vancouver, TUG-AGM 2019, 22 August

Andrea Capra (TRIUMF/ALPHA collab.)

ALPHA: Status and Prospects

The ALPHA Experiment: Brief Description

- 2 Antihydrogen Spectroscopy
- 3 Prospects for Laser Spectroscopy
- 4 Free-Fall of Antihydrogen

- Test CPT symmetry, by comparing \overline{H}/H spectra
 - Probing the foundation of the SM, searching for physics beyond-SM
- Test of the Weak Equivalence Principle, by measuring \overline{H} gravitational mass.
 - Probing General Relativity and its structure.

The ALPHA-2 Apparatus

Andrea Capra (TRIUMF/ALPHA collab.)

ALPHA: Status and Prospects

TUG-AGM 2019, 22 August 4/20

- New plasma technique: improvement on e⁺ plasma manipulation, gives colder and more consistent load
 - More robust scheme to produce H

Phys. Rev. Lett. 120, 025001 (2018)

 Accumulation of H
: confining antiatoms while synthesizing new H

Nature Comm. 8, 681 (2017)

• ALPHA now routinely confines $\approx 1000 \ \overline{H}$ simultaneously for $\gtrsim 10 \ h$ Hyperfine Interact (2019) 240:9

- Electric Charge Neutrality Nature 529 373 (2016)
- 2 1S-2S Nature **541** 506 (2017)
- Sround-State Hyperfine splitting Nature 548 66 (2017)
- 1S-2S Nature 557 71 (2018)
- 5 1S-2P Nature 561 211 (2018)

Spectroscopy GS HFS

Nature 548 66 (2017)

• e⁺ spin flip: transition from trapped to un-trapped states Nature 483 439 (2012)

- $\ket{c}
 ightarrow \ket{b}$ and $\ket{d}
 ightarrow \ket{a}$
- At 1 T $\Rightarrow \sim$ 29 GHz
- Continuously recording H annihilation following a resonant spin flip.

The frequency difference represents the ground-state hyperfine splitting

- independent of the field strength
- this measurement: 1420.4 \pm 0.5 MHz
- CPT test at 10⁻⁴ level

Spectroscopy 1S-2S I

- Trap antihydrogen (3 mixing cycles, ~40 atoms)
- Olear out any remaining charged particles
- 300s laser exposure at fixed frequency near $|1S,d\rangle \rightarrow |2S,d\rangle$ transition
- 32s microwave sweep to eject $|1S,c\rangle$
- Samp down magnets to detect remaining atoms

Credit: C. Ø. Rasmussen

Observational channels:

- Appearance during laser illumination: 1991 H detected
- Disappearance during trap shutdown:
 6137 H detected
 - $\gtrsim 15000~\overline{\text{H}}$ trapped

Lineshape predicted by simulation, assuming CPT conservation

Fit of the experimental data

 $f_{d-d} = 2\,466\,061\,103\,079.4(5.4)\,kHz$

1S-2S Spectroscopy

Andrea Capra (TRIUMF/ALPHA collab.)

TUG-AGM 2019, 22 August 10/20

Spectroscopy 1S-2P

Using a narrow-line-width, nanosecond-pulsed, vacuum-ultraviolet laser developed by UBC+TRIUMF

- 966 detected events during irradiation over several hours (estimated background 14 events).
- Relative precision: 5×10^{-8}

Nature 561 211 (2018)

- Update on Ground-State Hyperfine splitting
- Lamb shift in H
- Laser cooling of \overline{H} and its application to spectroscopy

- Major update: better characterization of the magnetic environment
 - precision improved by orders of magnitude.

- Not a direct measurement (ALPHA confines GS H)
- The measured frequency of the 1S-2S transition (in H) is sufficient to calculate the Lamb shift
 - by measuring 1S-2P_f and 1S-2P_c transitions (red and blue lines)
 - and by assuming Zeeman and hyperfine interactions in H

 $1S_d - 2S_d$ line after laser cooling: analysis is ongoing...

Credit: C. Ø. Rasmussen

The ALPHA-g Apparatus

NOT TO SCALE

Andrea Capra (TRIUMF/ALPHA collab.)

TUG-AGM 2019, 22 August 17/20

rTPC and Barrel Veto Built @ TRIUMF

- \overline{H} is a portal to study CPT invariance violation
- The ALPHA antimatter apparatus is designed to perform precision spectroscopy of \overline{H}
 - 1S-2S transition measured at ppt level
 - ground state hyperfine splitting
 - 1S-2P to open the door for laser cooling of H
- \overline{H} is a tool to test the Equivalence Principle
- ALPHA is gearing towards a measurement of the H gravitational mass with the ALPHA-g apparatus

ALPHA Collaboration

.....

ANCHINE

The Contector Institute

د⊅

AD@CERN and ALPHA@AD

Accelerator chain of CERN (operating or approved projects)

Andrea Capra (TRIUMF/ALPHA collab.)

Magnets UHV Space

Physical Supports

Electrodes under UHV

ALPHA: Status and Prospects

TUG-AGM 2019, 22 August 3/6

A view of ALPHA-2 and ALPHA-g

Outer Vacuum Chamber (OVC)

OVC (Heat Shielded)

Liquid Helium Space

Antihydrogen Stacking

High-Multiplicity Annihilation

Steeper curve ⇒
 More sensitivity

- ⇒ Colder H is better (no surprise)
- For equal currents, "upward fraction" is 10-20%
- ⇒ Efficient measurement with hypothesis testing with O(10²) H annihilation