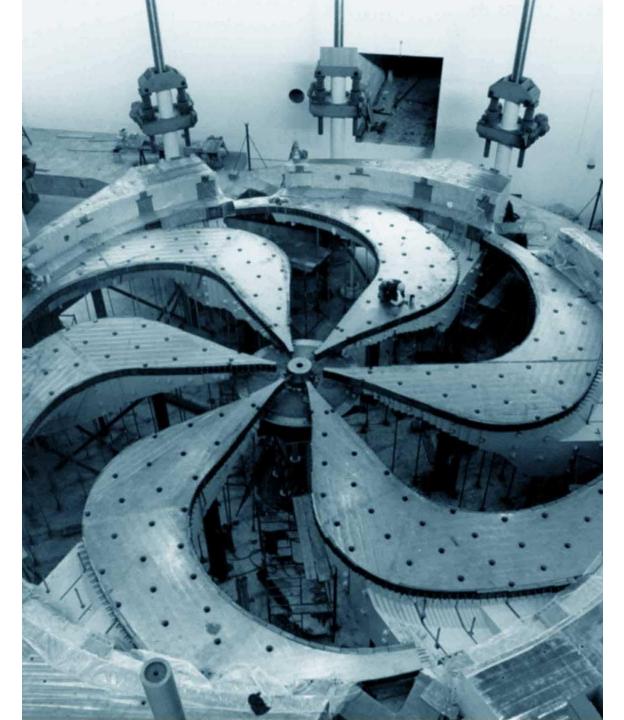
∂ TRIUMF

Welcome to the ML hands-on session!

Wojtek Fedorko



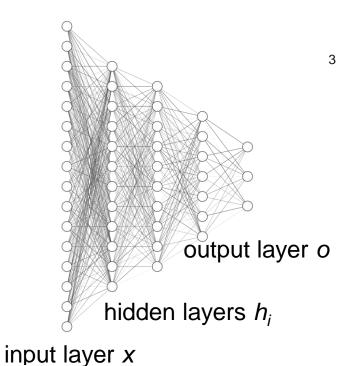
Discovery, accelerated

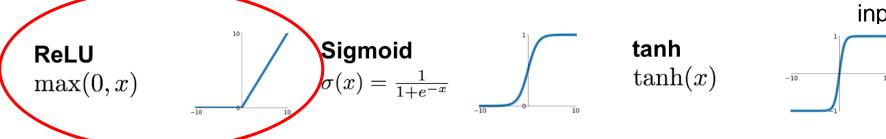
1

- Focus on technical aspects
- Convince you that deep learning is not that hard and can be useful
- Show you some common obstacles
- Absolute minimum 'theory' background
 - But that will only get you so far...

Now go to: <u>https://github.com/wfedorko/Science_Week_ML_tutorial</u> Multi-layer perceptron (MLP) at a glance

- Composition of linear transformations and activation functions: h_i=f(W h_{i-1}+b)
- Activation functions in the hidden layers:





 Activation function on the output layer depends on the task

Tasks, output layer activations and appropriate loss functions: rules of thumb for supervised learning

- *o* output node value, *z* output node before activation function, *y* target value,
 c class index, *M* number of categories
- Formulas for a single example (usually we need to calculate an average over batch)
- Motivation from Maximum Likelihood Principle : Ian Goodfellow <u>https://www.deeplearningbook.org</u> ch. 5

4

Task:	Binary classification	Multi-class classification	Regression
Output layer activation:	sigmoid $o = \frac{1}{1 + e^{-z}}$	softmax $o_{c} = \frac{e^{z_{c}}}{\sum_{j=1}^{M} e^{z_{j}}}$	linear $o = z$
Loss function:	"Binary Cross Entropy" $-(y \log(o) + (1 - y) \log(1 - o))$	"Cross-Entropy" $-\sum_{c=1}^{M} y_c \log(o_c)$	"Mean Squared Error" $(y-o)^2$

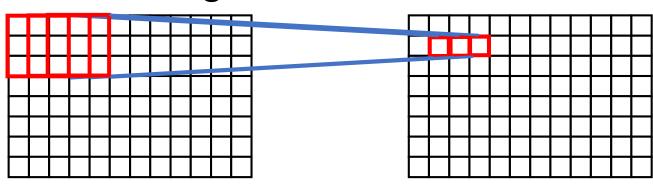
Learning is an optimization problem: we want to find values of network parameters W that minimize loss L

SGD:

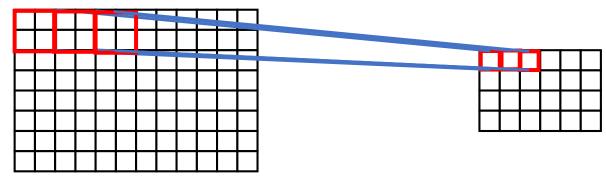
- Initialize W
- Iterate until convergence:
 - At iteration *i* take a batch of examples and calculate the (average) loss L_i (forward pass)
 - Compute the gradient ∇L_i wrt \mathbf{W}_i -
 - Update the weights $\mathbf{W}_{i+1} \leftarrow \mathbf{W}_i \lambda \nabla L_i$

Backpropagation! – recursively applying chain rule compute derivatives starting from the loss **Convolutional Neural Networks in a nutshell**

Convolutional layers: slide learnable 'filters' across the image



Pooling layers: take max or average of a window, reduce 'size' due to stride>1



Suggested Exercises

Optimize simple CNN (hyperparameters)

7

- Network architecture + learning parameters tuning
- Kernel sizes
- Batchnorm
- Dropout
- Learning rate/optimizer
- Datanormalization

'Advanced' architectures

- ResNet
- Densenet

Regression problem

'fit' particle energy