发TRIUMF

Advances in β-NMR @ ISAC

Sarah Dunsiger

Centre for Molecular and Materials Science, TRIUMF

21 August 2019

Comparison of Spin Resonance Techniques

	NMR	Bulk $\mu \mathrm{SR}$ 8Li $\beta \mathrm{NMR}$
Polarisation	<0.1	>0.8
Detection	Electronic pickup	Anisotropic β decay
Sensitivity	10^{17} spins	10^{7} spins
T_{1} range (s)	$10^{-5}-10^{2}$	$10^{-8}-10^{-4} \quad 10^{-3}-10^{3}$
Range	0.5 mm	$10-3000$ Angstroms

SrTiO_{3} : the Prototypical Perovskite 0.2

W A MacFarlane et al, Physica B 326, 209 (2003)
Cubic - tetragonal structural Phase transition $\sim 105 \mathrm{~K}$ Quantum Paraelectric below ~ 4K

Structural information from 8Li S=2 nuclear spin probe at inequivalent face centre sites

$$
\begin{aligned}
& \left.v_{m \leftrightarrow m-1}\right|_{m=-1 \cdots 2} \\
& \quad=v_{0}-\frac{v_{Q}}{2}\left(m-\frac{1}{2}\right)\left[3 \cos ^{2}(\theta)-1\right]
\end{aligned}
$$

$v_{o}(211 \mathrm{~K})=153 \mathrm{kHz}$

$v_{Q}=e^{2} q \mathrm{Q} / 4 \mathrm{~h} ; \mathrm{Q}$ is the nuclear electric quadrupole moment; θ the angle between the applied magnetic field and the symmetry axis of the EFG tensor, assuming the EFG is cylindrically symmetric

迅 TRIUMF

Determination of the nature of fluctuations

(b)
(a)

Long pulse spectra in Pt foil 18 keV at 300 K under 6.55 T

A Chatzichristos et al, Phys Rev B 96, 014307 (2017)

迅 TRIUMF

Magnetic and Quadrupolar Limits: Pt and SrTiO_{3}

$R\left(I, I^{\prime}\right) \equiv \frac{1 / T_{1}(I)}{1 / T_{1}\left(I^{\prime}\right)}=\frac{1 / T_{1}^{\mathrm{M}}(I)+1 / T_{1}^{\mathrm{Q}}(I)}{1 / T_{1}^{\mathrm{M}}\left(I^{\prime}\right)+1 / T_{1}^{\mathrm{Q}}\left(I^{\prime}\right)}$

$$
R_{\mathrm{M}}\left(I, I^{\prime}\right)=\left(\frac{\mu / I}{\mu^{\prime} / I^{\prime}}\right)^{2}=\left(\frac{\gamma}{\gamma^{\prime}}\right)^{2}
$$

Pt: Korringa relaxation from magnetic hyperfine interaction between the nuclear spin and the spin of the conduction electrons

$$
R_{\mathrm{Q}}\left(I, I^{\prime}\right)=\frac{f(I)}{f\left(I^{\prime}\right)}\left(\frac{Q}{Q^{\prime}}\right)^{2}
$$

SrTiO_{3} : quadrupolar fluctuations in Electric Field Gradient

	I^{π}	$\tau_{\beta}(\mathrm{s})$	$\mu\left(\mu_{\mathrm{N}}\right)^{\mathrm{a}}$	$Q(\mathrm{mb})^{\mathrm{b}}$
${ }^{8} \mathrm{Li}$	2^{+}	$1.2096(5)[14]$	$+1.653560(18)[15]$	$+32.6(5)[16]$
${ }^{9} \mathrm{Li}$	$3 / 2^{-}$	$0.2572(6)[17]$	$+3.43678(6)[15]$	$-31.5(5)[16]$

A Chatzichristos et al, Phys Rev B 96, 014307 (2017)

民̇TRIUMF

Tracer diffusion and surface trapping of $8 \mathrm{Li}+$ in rutile TiO_{2}

Simulated (using GEANT4) normalized α-yield as a function of time $Y=N_{\alpha} / N_{\beta}(t ; D)$ in TiO_{2}, given an initial beam energy of 25 keV , dependent on both the diffusion rate and the surface boundary condition.

迅TRIUMF

迅 TRIUMF

Beam Optics calculations

Calculated potential contour in the XY plane (at the decelerator exit, z = 0.3 m) for a typical applied potentials of $12 \mathrm{kV}(\mathrm{A}), 24 \mathrm{kV}(\mathrm{B} \& \mathrm{D})$ and $26 \mathrm{kV}(\mathrm{C})$ to the decelerator electrodes. S Saminathan

迅 TRIUMF

Beam Optics calculations - the Silver Lining

Calculated ion trajectories of 28 keV 8Li+ beam in ZY-plane at 0.2 Tesla

Calculated magnetic field along the beam axis for planned Helmholtz coil. Sample at $z=0.322 \mathrm{~m}$

发TRIUMF

Magnetic flux entry measured with muon spin rotation

Hodge-Podge spectrometer, named for its recycled components

T Junginger et al, Phys Rev Accel and Beams 21, 032002 (2018)

发TRIUMF

β-NMR Resonances in Bi, Sb and Topological Insulator $\mathrm{Bi}_{0.9} \mathrm{Sb}_{0.1}$

Bismuth, $\mathrm{B}=6.55 \mathrm{~T} / / \mathrm{c}, \mathrm{T}=294 \mathrm{~K}$

W A MacFarlane et al, Phys Rev B 90, 214422 (2014)

き TRIUMF

WURST Frequency Swept β-NMR Technique

Magnetisation trajectory

A means to utilise Wideband, Uniform Rate, Smooth Truncation RF pulses to extract frequency spectra as a function of T1 relaxation time in a single pulsed beam scan. This is also very efficient way to collect spectral data since the beam can be shared.

Bi (wide) $6.55 \mathrm{~T}, 50 \mathrm{~K}$, WURST

The Bi Z-polarization oscillations

$$
-0.02 \text { : The Bi Z-polarization oscillations }
$$

scans through the resonance.

The a) phase, b) amplitude and c) frequency of the WURST RF pulse.

Structural Phase Transitions in Perovskites ABO_{3}

LHS) Phase diagram of epitaxially grown SrTiO_{3} on substrates
with different lattice mismatches. Arrows indicate direction of ferroelectric polarization RHS) Possible SrTiO_{3} crystal structures: (a) cubic (undistorted) phase (b)
anti-ferrodistortive oxygen octahedra rotation cause distortions (c) polar, ferroelectric distortion

发TRIUMF

Advancement in RF techniques: RF comb

Simultaneous excitation of all transitions

$$
\mathrm{LaAlO}_{3} \mathrm{~T}=300 \mathrm{~K}
$$

®た TRIUMF

25Mg NMR vs 31Mg β-NMR in Ionic Liquids

1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium Dicyanamide

[Mg(DCA)6]4- (-60.2 ppm),
[Mg(DCA)5(H2O)]3- (-52.0 ppm),
[Mg(DCA)4(H2O)2]2- (-43.2 ppm)
[$\mathrm{Mg}(\mathrm{Ac}) 4(\mathrm{H} 2 \mathrm{O}) 2] 2-(-38.1 \mathrm{ppm})$,
[$\mathrm{Mg}(\mathrm{Ac}) 2(\mathrm{H} 2 \mathrm{O}) 4]$ (-31.9 ppm)

D Szunyogh et al, Dalton Trans. 47, 14431 (2018)

	β-NMR	NMR
No. Mg ions	$\sim 2 \cdot 10^{8}$	$\sim 10^{18}$
Spin	$1 / 2$	$5 / 2$
Volume	$2-4 \mu \mathrm{~L}$	$550 \mu \mathrm{~L}$
Temp	295 K	345 K
Mag. field	3.41 T	11.7 T
Exp. time	$1-2 \mathrm{~h}$	$\sim 24 \mathrm{~h}$

25 mM MgCl 2 in EMIM-Ac (red) and EMIM-DCA (blue)

き TRIUMF

β-NMR of Biologically Relevant Complexes

- Probe site coordination geometry: types, number and geometric arrangement of coordinating atoms
- Allow for experiments at physiologically relevant concentrations

Pressure distribution simulated using Molflow+ (E Kallenberg)
Ideal pinhole arrangement for transmission + pressure: (Target) $3 \mathrm{~mm}-4 \mathrm{~mm}-4 \mathrm{~mm}$ (Beamline)

- Probe site dynamics on a ms timescale (exchange dynamics,
 molecular reorientational correlation times)
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Isotope } & \text { Half-life [s] } & \text { Spin } & \begin{array}{c}\text { Decay } \\ \text { mode }\end{array} & \begin{array}{c}\text { Magnetic } \\ \text { moment [u }\end{array} \text {] }\end{array} \begin{array}{c}\text { Quadruple } \\ \text { moment [b] }\end{array}\right]$ Yields [1/s] $]$
* The provided yields were measured using Re surface ion source. Yields of e.g. ${ }^{225}$ Ac measured in Dec 2016 and Sep 2018 showed, however, an order of magnitude increase in yields when using TRILIS. This enhancement has also been showed for other measured isotopes.

®た TRIUMF

Proposed Layout in ISAC-1 Hall

OSAKA Life Science and Nuclear Physics
dedicated β-NMR spectrometer for liquids and high vapour pressure applications, focussing on systems of biochemical and medical relevance; chemical Shift Measurements by ${ }^{31} \mathrm{Mg},{ }^{54} \mathrm{Cu},{ }^{74} \mathrm{Cu},{ }^{75} \mathrm{Cu},{ }^{230} \mathrm{Ac},{ }^{232} \mathrm{Ac} \beta$-NMR

NSP Nuclear Structure and Symmetry
$2 \times 2.5 \mathrm{~m}$ footprint for modular experiments including resonant ionisation decay-spectroscopy; development of spinpolarised ${ }^{32} \mathrm{Na}$ beam; test of Time Reversal Symmetry Using Polarised Unstable Nuclei

EWP Physical Science
dedicated $2.5 \times 3 \mathrm{~m}$ high voltage platform, 0.1-30 keV ions radio frequency spin echo and adiabatic inversion techniques vector magnet (0-2 Tesla || beam, 0-0.5 Tesla \perp beam) 4-400 K cryo-oven
pencil beam spot for investigation on $200 \mu \mathrm{~m}$ lateral length scale
GRIFFIN Nuclear Structure and Symmetry
3 m low energy polarised beam transport
POLARIZER beamline and Laser Upgrade

Rapid Switching of Beam and Helicity Quasi continuous Beam on Three Channels

Rapid switching at kHz frequency using Trek HV push-pull switch

Proposed set-up identical to ILT:YCB3 plates into and out of TITAN. Routine pulsing at > 1 kHz with $50: 50$ duty cycle

M Pearson

Kerr cell: birefringence under application of electric field ($\Delta n=\lambda K E^{2}$)

Advancements in :

1) Radiofrequency techniques, to bring all the power of conventional NMR in spin manipulation to β-NMR, a depth resolved variant.
2) Sample environment (3He system; new spectrometers are being proposed, including pixelated Si photomultiplier detectors)
3) Multiplexing the incoming polarised radioactive isotope beam to take full advantage of increased availability once ARIEL comes online.

发TRIUMF

き TRIUMF

${ }^{8}$ Li Spin Lattice Relaxation in Bi, Sb and $\mathrm{Bi}_{0.9} \mathrm{Sb}_{0.1}$

Importance of orbital interactions 3D Dirac electron systems:

- μ inside the band gap, $\mathrm{T}_{1}^{-1} \sim \mathrm{~T}^{3} \log \left(2 \mathrm{~T} / \omega_{0}\right)$ for temperatures > band gap, (ω_{0} nuclear Larmor frequency; μ chemical potential)
- μ in the conduction or valence bands, $\mathrm{T}_{1}^{-1} \propto \mathrm{Tk}_{\mathrm{F}}{ }^{2} \log \left(2 \mathrm{v}_{\mathrm{F}} \mathrm{k}_{\mathrm{F}} / \omega_{0}\right)$ for low temperatures, (k_{F} and v_{F} Fermi momentum and velocity).
- $\mathrm{K}_{\text {orb }}$ is negative and its magnitude significantly increases with decreasing temperature when μ is located in the band gap.
- Korringa relation does not hold in the Dirac electron systems

T Hirosawa et al, J Phys Soc Jpn 86, 063705 (2017) H Maebashi et al, J Phys Chem Solids (2017) (in press)

