∂TRIUMF

The Emergence of nuclear-shell-model studies

Ania Kwiatkowski Research Scientist, TRIUMF Adjunct Professor, UVic

Discovery, accelerated

1

3

These shells or "magic numbers" could be derived from a harmonic oscillator.

Maria Goeppert-Mayer 1963

Hans D. Jensen 1963

The disappearance of expected and the emergence of new shells has been observed for several ratios of N/Z.

7

TITAN's mass campaign revealed the smallest shell closure for an expected magic number.

30 8.06 Measured ²⁹⁻³²Na, ³⁰⁻³⁴Mg, ²⁹⁻³⁵Al 8.04 25 Shell model calculations revealed strong 8.02 correlation energy manifests in S_{2n} surface 21 20 ⁴³Ca [MeV] 42 K ⁴¹Ar 15 Shell Gap Δ_n [MeV] S²ⁿ ⁴⁰Cl Literature TITAN 0 ³⁹S ³⁸P 10 5 ³¹Na ³⁷Si 3 ³²Mg ³⁶AI ^{▲ 35}Mg-5 ³⁰Ne N=20 ²⁵O ²⁷⊏ ^{4 34}<u>Na</u> ∕ 12 18 20 22 24 14 16 20 21 22 23 16 17 18 19 Neutron Number N Proton Number Z

A. Chaudhuri et al, PRC 88 (2013) 054317; AAK et al, PRC 92 (2015) 061301; A.T. Gallant, et al, PRC 96 (2017) 024325

TITAN-ISAC is the only Penning trap mass spectrometer capable to survey the "Island of Inversion".

- Accuracy: calibrations with stable species
 - vs. spread of TOF measurements
- High Precision: frequency measurement (≥ 5×10⁻⁹)
 - uncertainty improved ≤10x
- Short T_{1/2}: fast beam preparation (world record 9 ms)
 - $\geq T_{1/2} (^{32}Na) = 12.9 \text{ ms}$

At TIGRESS, ²⁸Mg was studied through γ - γ coincidence, Doppler shift lifetime, & comparison to theory.

- Symmetry-adapted No Core Shell Model can describe enhanced deformation & B(E2) values
- Positive-parity states dominated by sd configurations
- Negative-parity states understood with SPDF-MU interaction as single neutron excitation into *pf* shell

First observation of ²⁶Na levels with single-particle character were performed at TIGRESS.

- ²⁵Na(d,pγ)²⁶Na measured with TIGRESS + SHARC
- Excitation energies & spectroscopic factors in 200 good agreement with (0+1)\hbar \omega shelfstop 150 model calculations in full spsd pf basis
- Enhanced role of v1p_{3/2} configuration in structure of low-lying negative parity states (relative to ²⁸AI)

G.L. Wilson, et al., PLB 759 (2015) 417

Spectroscopic information of ³³⁻³⁵Mg, the center of the "Island of Inversion", is forthcoming from GRIFFIN

- Decay scheme of ³³Al measured with GRIFFIN + SCEPTAR:
 - 32 states & 100 transitions clarified
 - half-lives of ³³Mg, ^{32,33}Al, ³³Si determined
- Decay of ^{34,35}Mg under analysis
- Experiment S1367 will be continued with higher statistics

The question of magicity at N = 32 was unclear from phenomenological calculations.

Strategy was to approach from *N* = 28, which was validated through TITAN's mass measurements of K & Ca isotopes.

Strategy was to approach from *N* = 28, which was validated through TITAN's mass measurements of K & Ca isotopes.

With UCx targets, TITAN reached ⁵²Ca and confirmed magicity of *N*=32.

- A 1.7 MeV deviation in M(⁵²Ca) observed!
- Shift confirmed by ISOLTRAP, which measured masses up to ⁵⁴Ca
- Support of nascent NN and 3N calculations

18

Systematics of Ca structure can be observed through decay of K isotopes observed at GRIFFIN spectrometer.

Cr48 21.56 h	Cr49 42.3 m	Cr50 1.8E+17 y	Cr51 27.702 d	Cr52	Cr53	Cr54	Cr55 3.497 m	Cr56 5.94 m	Cr57 21.1 s	Cr58 7.0 s
0+	5/2-	0+	7/2-	0+	3/2-	0+	3/2-	0+	3/2-,5/2-,7/2-	0+
EC		4.345	EC	83.789	9.501	2.365	β-	β-	β-	β-
V47	V48	V49	V50	V51	V52	V53	V54	V55	V56	V57
32.6 m 3/2-	15.9735 a 4+	330 d 7/2-	1.4E+1/y 6+	7/2-	3./43 m 3+	1.61 m 7/2-	49.8 s 3+	6.54 s (7/2-)		
EC	EC		EC,β· 0.250	99 750	β-	β-	β-	β		
Ti46	Ti47	Ti48	Ti49	Ti50	Ti51	Ti52	Ti53	Ti54	Ti55	Ti56
0+	5/2-	0+	7/2-	0+	3/2-	0+	(3/2)-	0+		0+
8.0	7.3	73.8	5.5	5 /	β-	B-	β-			
Sc45	Sc46	Sc47	Sc48	Sc49	Sc50	Se51	Sc52	Sc53	Sc54	Sc55
7/2-	4+	3.3492 u 7/2-	43.07 II 6+	57.2 m 7/2-	102.5 s	(7/2)-	8.2 s 3+			
*	*	_		0	*					
100	β-	β-	β-	3-	K-	3-	β-			
100 Ca44	β [.] Ca45	β· Ca46	β [.] Ca47	Ca48	Ca49	Ca50	β [.] Ca51	Ca52	Ca53	Ca54
100 Ca44	β- Ca45 162.61 d 7/2-	β· Ca46	β· Ca47 4.536 d 7/2-	Ca48 6E+18 y	Ca49 8.718 m 3/2-	Ca50 13.9 s	β· Ca51 10.0 s (3/2-)	Ca52 4.6 s	Ca53 90 ms (3/2, 5/2,)	Ca54
100 Ca44 0+	β- Ca45 162.61 d 7/2-	β- Ca46 0+	β- Ca47 4.536 d 7/2-	6E+18 y 0+ 3·,β·β·	Ca49 8.718 m 3/2-	Ca50 13.9 s 0+	β· Ca51 10.0 s (3/2-)	Ca52 4.6 s 0+	Ca53 90 ms (3/2-,5/2-)	Ca54 0+
100 Ca44 0+ 2.086	β- Ca45 162.61 d 7/2- β-	β- Ca46 0+ 0 004	β- Ca47 4.536 d 7/2- β-	Ca48 6E+18 y 0+ ³ ·,β·β· 0.187	Ca49 8.718 m 3/2-	Ca50 13.9 s 0+ β ⁻	β- Ca51 10.0 s (3/2-) β·n	Ca52 4.6 s 0+ β-	Ca53 90 ms (3/2-,5/2-) 3m	Ca54 0+
100 Ca44 0+ 2.086 K43 22.3 h	β ⁻ Ca45 162.61 d 7/2- β ⁻ K44 22.13 m	β- Ca46 0+ 0.004 K45 17.3 m	β- Ca47 4.536 d 7/2- β- K46 105 s	35 Ca48 6E+18 y 0+ 3.β-β- 0.187 K47 I7:50.5	Ca49 8.718 m 3/2- K48 6.8 s	β· Ca50 13.9 s 0+ β· K49 1.26 s	β- Ca51 10.0 s (3/2-) βn K50 472 ms	Ca52 4.6 s 0+ 8- K51 365 ms	Ca53 90 ms (3/2-,5/2-) 3n K52 105 ms	Ca54 0+ K53 30ms
100 Ca44 0+ 2.086 K43 22.3 h 3/2+	β ² Ca45 162.61 d 7/2- β ² K44 22.13 m 2-	β- Ca46 0+ 0 004 K45 17.3 m 3/2+	β- Ca47 4.536 d 7/2- β- K46 105 s (2-)	$\begin{array}{c} 3^{5}\\ Ca48\\ 6E+18 y\\ 0+\\ 3\cdot,\beta\cdot\beta\cdot\\ 0.187\\ \hline K47\\ 17:50 s\\ 1/2+\\ \end{array}$	Ca49 8.718 m 3/2- K48 6.8 s (2-)	β· Ca50 13.9 s 0+ β· K49 1.26 s (3/2+)	β- Ca51 10.0 s (3/2-) β-n K50 472 ms (0-,1,2-)	Ca52 4.6 s 0+ β- K51 365 ms (1/2+,3/2+)	Ca53 90 ms (3/2-,5/2-) 3n K52 105 ms	Ca54 0+ K53 30 ms (3/2+)
100 Ca44 0+ 2.086 K43 22.3 h 3/2+ β-	β ² Ca45 162.61 d 7/2- β ² K44 22.13 m 2- β ²	B Ca46 0+ 0 004 K45 1/7.3 m 3/2+	B- Ca47 4.536 d 7/2- β- K46 105 s (2-) β-	3 ⁵ Ca48 6E+18 y 0+ 3-,β-β- 0.187 K47 Γ7-50 s 1/2+ β-	Ca49 8.718 m 3/2- K48 6.8 s (2-) βn	β ⁻ Ca50 13.9 s 0+ β ⁻ K49 1.26 s (3/2+) β-	β ⁻ Ca51 10.0 s (3/2-) βn K50 472 ms (0-,1,2-) βn	Ca52 4.6 s 0+ β- K51 365 ms (1/2+,3/2+) βn	Ca53 90 ms (3/2-,5/2-) βn K52 105 ms βn	Ca54 0+ K53 30.ms (3/2+) β-n
100 Ca44 0+ 2.086 K43 22.3 h 3/2+ β· <u>Ar42</u> 33.0 r	β- Ca45 162.61 d 7/2- β- K44 22.13 m 2- β- Ar43 537 m	B ⁻ Ca46 0+ 0 004 K45 β ⁻ β ⁻ Ar44 1870	B Ca47 4.536 d 7/2- β- K46 105 s (2-) β- Ar45 21.49 c	$β^{-}$ Ca48 6E+18 y 0+ 3',ββ' 0187 K47 17:50.5 1/2+ β' Ar46	Ca49 8.718 m 3/2- K48 6.8 s (2-) βm Ar47 700 m	3 Ca50 13.9 s 0+ β- K49 1.26 s (3/2+) β- Ar48	β ⁻ Ca51 10.0 s (3/2-) βn K50 472 ms (0-,1,2-) βn Ar49	$\begin{array}{c} Ca52 \\ 4.6 \text{ s} \\ 0+ \\ 8 \\ \hline \\ 8 \\ (1/2+,3/2+) \\ \beta n \\ Ar50 \end{array}$	Ca53 90 ms (3/2-,5/2-) 3n K52 105 ms βn Ar51	Ca54 0+ <u>K53</u> <u>30,ms</u> (3/2+) βn Ar52
100 Ca44 0+ 2.086 K43 22.3 h 3/2+ β· Ar42 32.9 y 0+	β- Ca45 162.61 d 7/2- β- K44 22.13 m 2- β- Ar43 5.37 m (3/2,5/2)	B- Ca46 0+ 0 004 K45 17.3 m 3/2+ β- Ar44 11.87 m 0+	β- Ca47 4.536 d 7/2- β- K46 105 s (2-) β- Ar45 21.48 s	$β^{-}$ Ca48 6E+18 y 0+ $3\cdot,\beta\cdot\beta_{-0.187}$ K47 1/2+ $β^{-}$ Ar46 8.4 s 0+	Ca49 8.718 m 3/2- K48 6.8 s (2-) βm Ar47 700 ms	3 Ca50 13.9 s 0+ β- K49 1.26 s (3/2+) β-n Ar48 0+	β ⁻ Ca51 10.0 s (3/2-) βπ K50 472 ms (0-,1,2-) βπ Ar49	$\begin{array}{c} Ca52 \\ 4.6 \text{ s} \\ 0+ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Ca53 90 ms (3/2-,5/2-) 3n K52 105 ms βn Ar51	Ca54 0+ K53 39,ms (3/2+) βn Ar52 0+
100 Ca44 0+ 2.086 K43 22.3 h 3/2+ β· Ar42 32.9 y 0+ β·	β- Ca45 162.61 d 7/2- β- K44 22.13 m 2- β- Ar43 5.37 m (3/2,5/2) β-	β- Ca46 0+ 0 004 K45 V7.3 m 3/2+ β- Ar44 11.87 m 0+ β-	β ² Ca47 4.536 d 7/2- β- K46 105 s (2-) β- Ar45 21.48 s	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	Ca49 8.7.18 m 3/2- K48 6.8 s (2-) β n Ar47 700 ms β n	3 Ca50 13.9 s 0+ β- K49 1.26 s (3/2+) β- Ar48 0+	β ² Ca51 10.0 s (3/2-) βπ K50 472 ms (0-,1,2-) βπ Ar49	Ca52 4.6 s 0+ β- <u>K51</u> 365 ms (1/2+,3/2+) βn Ar50 0+	Ca53 90 ms (3/2-,5/2-) 3n K52 105 ms βn Ar51	Ca54 0+ K53 3θ,ms (3/2+) βn Ar52 0+
100 Ca44 0+ 2.086 K43 22.3 h 3/2+ β· Ar42 32.9 y 0+ β·	β- Ca45 162.61 d 7/2- β- K44 22.13 m 2- β- Ar43 5.37 m (3/2,5/2) β-	β- Ca46 0+ 0 004 K45 17.3 m 3/2+ β- Ar44 11.87 m 0+ β-	β ⁻ Ca47 4.536 d 7/2- β- K46 105 s (2-) β- Ar45 21.48 s β-	$β^{-}$ Ca48 6E+18 y 0+ $3\cdot,\beta\cdot\beta$ 0+ $3\cdot,\beta\cdot\beta$ 0+ 17:50.5 1/2+ $β^{-}$ Ar46 8.4 s 0+ β- β- β- β- 1/2+ β- β- 1/2+ 1/2+ 1/	Ca49 8.718 m 8.718 m 3/2- K48 6.8 s (2-) βn Ar47 700 ms βn βn	3- Ca50 13.9 s 0+ β- K49 1.26 s (3/2+) βm Ar48 0+	β· Ca51 10.0 s (3/2-) βn K50 472 ms (0-,1,2-) βn Ar49	Ca52 4.6 s 0+ β- K51 365 ms (1/2+,3/2+) βn Ar50 0+	Ca53 90 ms (3/2-,5/2-) βn K52 105 ms βn Ar51	Ca54 0+ K53 3θ,ms (3/2+) βn Ar52 0+

⁴⁶K – ⁴⁶Ca, Dec 2014, 4x10⁵pps, ~40hrs

"Detailed spectroscopy of ⁴⁶Ca: The investigation of the β decay of ⁴⁶K with the GRIFFIN γ -ray spectrometer", J.L. Pore, **PhD thesis (2016) SFU**, *submitted to Phys. Rev. C (2019).*

Three beamtime periods with GRIFFIN 1 publication (2017), 4 expected in 2019

- 1 PhD thesis, 2 Masters thesis
- 1 Masters thesis in progress

⁵⁰Sc - ⁵⁰Ti, Nov 2016, 1x10⁶pps, ~5hrs "Search for particle-hole excitations across the *N*=28 shell closure", C. Jones, **Masters thesis (Jan 2018)**, *Submitted to Phys. Rev. C (2019).*

⁵⁰Ca - ⁵⁰Sc, Nov 2016, 1x10⁶pps, ~2hrs
"Spectroscopy of ⁵⁰Sc and the first calculation of *B(M3)* strengths using *ab initio* methods",
A.B. Garnsworthy, Phys. Rev. C 96, 044329
(2017).

⁵²K – ⁵²Ca, Jul 2018, 300pps, ~48hrs
"Evolution of Shell Structure in Neutron-Rich Calcium Isotopes", R. Coleman, Masters thesis Univ. of Guelph, in preparation for Phys. Rev. C (2019).

⁴⁷K – ⁴⁷Ca, Dec 2014, 1x10⁵pps, ~90hrs "Detailed decay spectroscopy of ⁴⁷Ca", J.K. Smith, in preparation for Phys. Rev. C (2019).

J. L. Pore, PhD Thesis, SFU 2016; A.T. Gallant et al., PRL 109 (2012) 032506; F. Weinholtz et al., Nature 493 (2013) 346

The ground state of ⁴⁶K exhibits more $\pi s_{1/2}$ character than previously believed.

- 150 new γ-ray transitions and 12 new excited states observed
- Angular correlations allowed for spin assignments
- Based on β feeding intensities ⁴⁶K may be more strongly dominated by πs_{1/2} (mixed with πd_{3/2})

J. L. Pore, PhD Thesis, SFU 2016; et al., submitted to PRC

Validated, ab *initio* theory surpassed experiment, reaching the Ca dripline.

Predictions of dripline near ⁶⁰Ca are beyond present experimental reach.

Validated, ab *initio* theory surpassed experiment, reaching the Ca dripline.

Predictions of dripline near ⁶⁰Ca are beyond present experimental reach.

First *ab-initio* predictions for open shells in mid-mass regime from P. Navrátil & collaborators.

TITAN masses of Ti & V demonstrate the transitional role of Ti and were compared to TRIUMF *ab initio* predictions.

- Ab initio calculations from
 - Peter Navrátil & collaborators
 - Jason Holt & collaborators
 - Heiko Hergert

TITAN's mass measurements of Ti & V demonstrate the transitional role of Ti.

ISAC shell-model studies are cutting edge and will continue ...

- The evolution from N = 28 to 32 shell in the Ca neighborhood has been studied through masses & with theory, with spectroscopic information being filled in at GRIFFIN.
- The Island of Inversion at N = 20 is being mapped through masses & γ-ray spec.
 More, including laser spec, will be done.

• Other shell closures, e.g. around ${}^{130}_{82}Cd$, have been studied or are now.

Comprehensive suite of experimental facilities: γ -ray spec, collinear laser spec, masses, and rxns.

 Simultaneous & ongoing beam development provides highintensity exotic beams, keeping the nuclear-structure program competitive with or ahead of other experimental facilities.

% TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

