Unmasking halo features with two decades of ISOL beams @ TRIUMF

R. Kanungo Saint Mary's University / TRIUMF

ISAC20, TRIUMF, Canada, August 21, 2019

9

Breaking the traditional image

3

Breaking the traditional image

Breaking the traditional image

Weighing Halos - TITAN @ TRIUMF

First Penning-Trap Mass Measurement of the Exotic Halo Nucleus 11Li

M. Smith et al., PRL 101 (2008) 202501

Shortest half-life measured with Penning trap

9

ISAC20, TRIUMF, Canada, August 21, 2019

R. Kanungo

3

What lies behind the halo

3

ISAC20, TRIUMF, Canada, August 21, 2019

3

3

Picking the paired halo neutrons in ¹¹Li

2007

ISAC-II Delivers its first Radioactive Beam to an Experiment.

Active target Maya from GANIL

ISACII opens new era in halo studies

AC20, TRIUMF, Canada, August 21, 2019

Neutron correlation $11Li + p \longrightarrow {}^9Li + t$

PRL 100, 192502 (2008)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 2008

20

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata et al.

3

Neutron correlation ¹¹Li+p --->⁹Li+t

PRL 100, 192502 (2008)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 2008

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata et al.

 $^{11}Li=^{9}Li+n+n$

Core (⁹Li) excited state : $J^{\pi}(n-n)=2^+$, 1⁺ **Evidence of phonon mediated pairing**

Exchange of *core-halo* vibration binds the halo G. Potel et al., Phys. Rev. Lett. 105 (2010) 172502.

9

Neutron correlation ${}^{11}Li+p \longrightarrow {}^{9}Li+t$

PRL 100, 192502 (2008)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 2008

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata et al.

9

 $^{11}\text{Li}=^{9}\text{Li}+n+n$

Core (⁹Li) excited state : $J^{\pi}(n-n)=2^+$, 1⁺ **Evidence of phonon mediated pairing**

Exchange of *core-halo* vibration binds the halo G. Potel et al., Phys. Rev. Lett. 105 (2010) 172502.

⁹Li plays a dynamic role in the binding of ¹¹Li

Soft dipole resonance

3

Soft dipole resonance

3

Soft dipole resonance

3

Soft dipole resonance

9

Soft dipole resonance

Two decades of various searches did not reach conclusive understanding

IRIS : Reaction spectroscopy station

4K

Unique Feature

9

Thin windowless Solid H₂/D₂ target Higher reaction yield

Negligible background

3

¹¹Li + Pb : Deviating from Rutherford scattering

Reduction in $d\sigma/d\Omega$ due to strong dipole coupling between ground state and continuum states in ¹¹Li

9

¹¹Li breakup @ Coulomb barrier

First measurement of breakup of ¹¹Li around the Coulomb barrier

PRL 110, 142701 (2013)

PHYSICAL REVIEW LETTERS

week ending 5 APRIL 2013

¹¹Li Breakup on ²⁰⁸Pb at Energies Around the Coulomb Barrier

J.P. Fernández García et al.

ISAC20, TRIUMF, Canada, August 21, 2019

¹¹Be + Au near-barrier scattering

3

@ TIGRESS

ISAC20, TRIUMF, Canada, August 21, 2019

A. Sanetullaev, R.Kanungo et al., Phys. Lett. B 755 (2016) 481

3

ISAC20, TRIUMF, Canada, August 21, 2019

ISAC20, TRIUMF, Canada, August 21, 2019

R. Kanungo

 $^{11}_{3}Li_{8}$

ISAC20, TRIUMF, Canada, August 21, 2019

ISAC20, TRIUMF, Canada, August 21, 2019

9

¹²Be: Intruder s-orbital

3

ISAC20, TRIUMF, Canada, August 21, 2019

¹²Be : Intruder s-orbital

 $^{11}Be(d,p)^{12}Be$

ISAC20, TRIUMF, Canada, August 21, 2019

¹²Be: Intruder s-orbital

3

¹¹Be(d,p)¹²Be

ISAC20, TRIUMF, Canada, August 21, 2019

¹²Be : Intruder s-orbital

 $^{11}Be(d,p)^{12}Be$

¹²Be_{gs} : small $2s_{1/2}$, large $1d_{5/2}$ fraction

ISAC20, TRIUMF, Canada, August 21, 2019

¹¹Li Beta decay : preserves halo as excited ¹¹Be

¹¹Li Halo decay

3

- Large branching ratio $B_d = 1.3 \times 10^{-4} (^{6}\text{He} : B_d \sim 10^{-6})$
 - Decay proceeds directly to continuum.

This will be useful to constrain the wavefunction of ¹¹Li

ISAC20, TRIUMF, Canada, August 21, 2019

¹¹Li : Quadrupole moment

Journal of Physics G: Nuclear and Particle Physics

High precision measurement of the 11 Li and 9 Li quadrupole moment ratio using zero-field β -NQR

A. Voss et al. (2013)

Most precise measurement of quadrupole moment ratio of ⁹Li/¹¹Li

Summary

20 years of ISAC-beams - ¹¹Li TRIUMF's signature beam - made pioneering measurements in unveiling the neutron halo

TITAN	: ¹¹ Li shortest half-life measured most precisely
Isotope Shift	: First Charge radius of halo ¹¹ Li -> Halo correlation
Active Target	: First pair transfer halo ¹¹ Li -> Halo correlation, phonon mediated pairing
IRIS	: Established soft dipole resonance in ¹¹ Li, found resonance in ¹⁰ Li
TUDA	: Found p- and d- wave resonance in ¹⁰ Li
Silicon setup	· Below barrier Coulomb scattering and breakup - Halo dipole coupling effect seen
Shicon setup	. Delow barrier Coulonio scattering and breakup - maio dipole coupling effect seen
TIGRESS	: Halo configuration in ¹¹ Be and ¹² Be
TIGRESS 8 - pi	 Below barrier coulomb scattering and breakup - frate dipole coupling effect seen Halo configuration in ¹¹Be and ¹²Be Observed halo preserved in excited daughter state in ¹¹Li β-decay
TIGRESS 8 - pi Silicon implantation	 Below barrier coulomb scattering and breakup - fraid dipole coupling effect seen Halo configuration in ¹¹Be and ¹²Be Observed halo preserved in excited daughter state in ¹¹Li β-decay First measurement of halo neutron decay in ¹¹Li

ISAC20, TRIUMF, Canada, August 21, 2019

Look Ahead

3

Happy 20th Anniversary !!

Thank you to TRIUMF - ISAC for enabling a glorius period of pioneering experiments with Halo beams

Looking forward to Many Many Happy Returns of decades of new discoveries with ARIEL-beams

Remembering our treasured colleagues who we lost along the journey

John D'Auria

Pat Walden

Randy Churchman

Grant Sheffer

ISAC20, TRIUMF, Canada, August 21, 2019