

Zaher Salman :: Laboratory for Muon Spin Spectroscopy :: Paul Scherrer Institut

From structural distortions to weak magnetism Exploring the capabilities of β -NMR

TRIUMF – ISAC20 Symposium - 21 August 2019

Collaborators

PSI: T. Prokscha E. Morenzoni A. Suter M. Radovic Z. Wang D. E. McNally Z. Ristic J. A. Krieger M. Naamneh Ch. Schneider

UBC: R. F. Kiefl W. A. MacFarlane R. M. L. MacFadden V. L. Karner A. Chatzichristos D. Fujimoto

U of Alberta: K. H. Chow

University of Florence R. Sessoli M. Mannini TRIUMF: D. L. Cortie G. D. Morris I. A. McKenzie C. D. P. Levy M. R. Pearson R. Abasalti B. Hitti S. Kreitzman D. Areneau S. Daviel

- Introduction Why β -NMR? Unique capabilities.
- Some examples:
 - Structural transition near the surface of SrTiO₃
 - Week magnetism at LaAlO₃/SrTiO₃ interfaces
 - Tuning magnetism via interface engineering
 - Other ongoing activities
- Summary and conclusions

Unique capabilities and special powers of $\beta\text{-}NMR$

The low tunable implantation energy = depth resolved measurements

What else?

The behaviour of Li (or other probe) in materials.

Battery materials etc.

What can we study with (^{8}Li) β -NMR?

⁸Li⁺ with spin *I*=2 (spin >1/2)

Nuclear magnetic **dipole** moment couples to magnetic fields

Nuclear electric quadrupole moment couples to electric field gradient

Example 1: Structural Phase Transition in SrTiO₃ Tc~105 K

Salman et al., PRB 70, 104404 (2004)

Zero Field β -NMR in SrTiO₃

Salman et al., PRL 96, 147601 (2006)

Spin Lattice Relaxation vs. T

Polarization Loss at T>T_c

Salman et al., PRL 96, 147601 (2006)

The interface between them becomes metallic, superconducting and magnetic

Both LaAlO₃ (LAO) and SrTiO₃ (STO)

are insulating and non-magnetic

PAUL SCHERRER INSTITUT

Annadi et al, Nature Commun. 4, 1838 (2013)

Ohtomo et al, Nature 427, 423 (2004)

Relaxation rates in superlattices of LAO/STO

- Magnetism appears in SLs with LAO layers of 6 or larger unit cells
- Peak near the "magnetic transition", T^{*}~35 K.

Salman et al, Phys. Rev. Lett 109, 257207 (2012)

Density of Magnetic Moments at the Interface

- The magnetism can be produced in superlattices.
- There is a "critical thickness" for the appearance of magnetism is 4 or 5 u.c.
- The magnetism, in both LAO8 and LAO6, is associated with:

 $\mu \sim 1.8 \times 10^{-3} \mu_B$ density $\sim 1.13 \times 10^{12} \mu_B / cm^2$

 Consistent with magnetism on both interfaces: Ti₂O/LaO⁺ and SrO/AlO₂⁻

Example 3: Probing LaTiO₃/Substrate Interface with ⁸Li⁺

10 15 LTO/LAO Stopping Profile (%/nm) 2 keV 8 LTO/STO 10 6 $1/T_{1}$ (1/s) 5 2 LaTiO₃ 0 0 0 50 100 150 200 250 300 0 10 20 30 T (K) Depth (nm)

On STO:

- No static magnetism.
- Linear decrease in 1/T₁ as expected in metallic systems.

On LAO:

- A broad peak centred around ~75K, consistent with a magnetism.
- Another sharp increase below ~10K.

Substrate

40

Example 4:

How to measure magnetism from a monolayer Pushing the limit of β -NMR

Dipolar Fields in the Substrate

Salman et al., Nano Lett. 7, 1551 (2007)

β -NMR in a monolayer of TbPc₂ on Si

β -NMR in a monolayer of TbPc₂ on Si

- Dirac/topological materials
 - Looking at surface/interface topological states
- Van der Waals materials, transition metal chalcogenides and 2D magnets
 - Some of these are graphene like 2D materials but with more versatile properties
- Molecular dynamics in polymers, their surfaces and interfaces
- Li diffusion in general and in Li battery materials

Summary and Conclusions

- Low energy implanted spin probes give a powerful and unique tool to investigate thin films and interfaces, finite size effects, diffusion etc.
- Spin 1/2 probes detect magnetic properties while spin >1/2 probes can also probe structural/orbital effects.
- The most important feature are:
 - High sensitivity (films/nano-structures)
 - Depth resolved capability on nm scale
 - Access to buried interfaces

Collaborators

PSI: T. Prokscha E. Morenzoni A. Suter M. Radovic Z. Wang D. E. McNally Z. Ristic J. A. Krieger M. Naamneh Ch. Schneider

UBC: R. F. Kiefl W. A. MacFarlane R. M. L. MacFadden V. L. Karner A. Chatzichristos D. Fujimoto

U of Alberta: K. H. Chow

University of Florence R. Sessoli M. Mannini TRIUMF: D. L. Cortie G. D. Morris I. A. McKenzie C. D. P. Levy M. R. Pearson R. Abasalti B. Hitti S. Kreitzman D. Areneau S. Daviel

Thank you ...

Relaxation rates in superlattices of LAO/STO

Molecular dynamics in PS films

I. McKenzie et al, Soft Matter, 14, 7324 (2018)