

Nuclear shapes, coexistence and collective behaviors studied at ISAC

Adam Garnsworthy Principal Scientist for ARIEL, Senior Scientist, TRIUMF

ISAC 20 Symposium August 21st, 2019; TRIUMF, Vancouver, Canada

Excitations in atomic nuclei

- Microscopic
 - How are the complex and diverse features of nuclear structure constructed from a few elementary building blocks?
 - What is the force that binds nuclei?
- Macroscopic
 - How do complex nuclear systems (~200 nucleons) display such simple and regular patterns?
 - What are the simple patterns which nuclei display and what are their origins?

Microscopic

• Single-particle structure or seniority scheme, "Shell model"

Microscopic

- Single-particle structure or seniority scheme, "Shell model"
- High 2⁺ energy, small transition probability
- Angular momentum from alignment of last pair intrinsic spins

Seniority = number of nucleons not paired to zero angular momentum

Figure from: A. Jungclaus et al., PRL 99, 132501 (2007)

E_x (MeV)

0

Macroscopic

- Deformed shape, collective motion, rotational bands
- Low 2⁺ energy, large transition probability
- Angular momentum from collective motion of entire nucleus

Evolution between Microscopic to Macroscopic

Evolution between Microscopic to Macroscopic

Fig. 3. Energies of 2_1^+ states (E(2_1^+)) for even-even Z = 2-104 nuclei, in keV. Pritychenko *et al.*, Atomic Data & Nucl. Data Tables, 107 (2016)

Graph 28. Evaluated energies, $E(2_1^+)$, and $B(E; 0_1^+ \rightarrow 2_1^+)$ values for Ba nuclei.

8π: <u>Gamma Decay of the 31-year $K^{\pi} = 16^+$ Isomer in ¹⁷⁸Hf</u>

Experiment: December 2002

M.B. Smith et al., Phys. Rev. C 68, 031302(R) (2003). $K^{\pi} = 16^{+}$ T_{1/2} = 31 yr 16^{+} 13-3 231 310 297 11-12-587 574 343 27 601 535. 258 10-495

K^π = 0⁺
 stable

8π: Gamma Decay of the 31-year $K^{\pi} = 16^+$ Isomer in ¹⁷⁸Hf

- reduced K hindrances ~ 100

P.M. Walker and G. Dracoulis, Nature 399, 35 (1999).

 $K^{\pi} = 16^{+}$ M.B. Smith et al., Phys. Rev. C 68, 031302(R) (2003). $T_{1/2} = 31 \text{ yr}$

Detailed scrutiny of collective models

Figures from K.L.Green, MSc thesis, Univ. of Guelph (2009)

Nuclear Structure from High-Statistics Beta-Decay

P.E. C. A	P.E. Garrett, Univ. of Guelph C. Andreoiu, SFU										Bal25 3.5 m 1/2(+) EC Csl24	Ba126 100 m 0+ EC Cs125	Ba127 12.7 m 1/2+ FC Cs126	Ba128 2.43 d 0+ EC Cs127	Bal29 2.23 h 1/2+ 0+ * EC 0.106 Csl28 Csl29	
17 Us	0.57 s (1+)	14s	3.84 s >4+ *	8.4 s (9/2+) *	14 s 2 *	43.0 s 9/2+ *	64 s 2 *	155 s 3/2(+) *	21.0 s 1+ *	5.94 m 1/2+ *	30.8 s 1+ *	45 m (1/2+)	1.64 m 1+	6.25 h 1/2+	3.66 m 32.06 h 1+ 1/2+ EC EC	
Xe112 2.7 s 0+ EC a	Xell3 2.74 s	Xel14 10.0 s 0+ EC	Xel15 18 s (5/2+) ECp.ECa	Xell6 59 s 0+ EC	Xel17 61 s 5/2(+) ECp	Xe118 3.8 m 0+ EC	Xel19 5.8 m (5/2+) EC	Xe120 40 m 0+ EC	Xe121 40.1 m 5/2(+) EC	Xe122 201 h 0+ EC	Xe123 2.08 h (1/2)+ EC	Xe124 1.6E+14 y 0+ ECEC 0 10	Xe125 169 h (1/2)+ *	Xe126	High-statistics	s studies of Cd, Sn, Xe with 8pi:
IIII 2.5 s (5/2+)	I112 3.42 s	1113 6.6 s	III14 21 s 1+ *	III15 13 m (5/2+)	II16 2.91 s 1+ *	II117 2.22 m (5/2)+	II18 13.7 m 2- *	II19 19.1 m 5/2+	I120 81.0 m 2- *	I121 2.12 h 5/2+	I122 3.63 m 1+ *	1123 1327 h 5/2+	1124 41760 d 2-	I125 59.408 d 5/2+	D.C. Cross <i>et</i> J.L. Pore <i>et a</i>	<i>t al</i> . Eur. Phys. J. A 53, 216 (2017). <i>I</i> ., Eur. Phys. J. A 53, 27 (2017).
Tell0 18.6 s 0+	Tell1 193 s	Tell2 2.0 m 0+	Tell3 1.7 m (7/2+)	Tell4 15.2 m 0+	Tel15 5.8 m 7/2+ *	Tell6 2.49 h 0+	Tell7 62 m 1/2+ *	Tel18 6.00 d 0+	Tell9 16.03 h 1/2+ *	Tel20 0+	Te121 16.78 d 1/2+ *	Te122 0+	Tel23 IE+13y I/2+ EC *	Te124	B. Jigmeddor A.J. Radich e P.E. Garrett e	<i>j et al.</i> , Eur. Phys. J. A, 52, 36 (2016). <i>t al.</i> , Phys. Rev. C 91, 044320 (2015). <i>t al.</i> , PRC 86, 044304 (2012).
Sb109 17.0 s (5/2+)	Sb110 23.0 s 3+	Sb111 75 s (5/2+)	Sb112 51.4 s 3+	Sb113 6.67 m 5/2+	Sb114 3.49 m 3+	Sb115 321 m 5/2+	Sb116 15.8 m 3+	Sb117 2.80 h 5/2+	Sb118 3.6 m 1+	0.096 Sb119 38.19 h 5/2+	Sb120 15.89 m 1+	2.603 Sb121 5/2+	0.908 Sb122 2.7238 d 2- *	4816 Sb123 7/2+	P.E. Garrett e P.E. Garrett e	<i>t al.</i> , Acta Phys.Pol. B42, 799 (2011). <i>t al.</i> , AIP Conf.Proc. 1377, 211 (2011).
Sn108 10.30 m 0+	Sn109 18.0 m 5/2(+)	Sn110 411h 0+	Sn111 353 m 7/2+	Sn112 0+	Sn113 115.09 d 1/2+ *	Sn114 0+	Sn115 1/2+	Sn116 0+	Sn117	Sn118 0+	Sn119	57.36 Sn120 0+	Sn121 27.06 h 3/2+ *	42.64 Sn122 0+	K.L. Green <i>et</i> Combined wit	<i>al</i> ., PRC 80, 032502 (2009). th results from (n.n'). (n.v). Coulex.
In107 32.4 m 9/2+	In108 58.0 m 7+ *	In109 4.2 h 9/2+	In110 49h 7+ FC	0.97 Inll1 2.8047 d 9/2+ *	In112 14.97 m 1+ FC ft	0.05 In113 9/2+ *	0.34 Inll4 71.9 s 1+ *	14.53 Inll5 4.41E+14 y 9/2+ β ⁻ *	1.08 14.10 s 1+ *	24.25 Inll7 43.2 m 9/2+ *	859 5.0 s 1+ *	32.59 In119 2.4 m 9/2+ *	D 3.08 s 1+ 8:	4.03 In121 23.1 s 9/2+ #	transfer react	ions
Cd106 0+ 125	Cd107 6.50 h 5/2+ EC	Cd108 0+ 0.89	Cd109 462.6 d 5/2+ EC	Cd110 0+ 12.49	Cd111 1/2+ *	43 Cd112 0+ 2413	Cd113 9.3E+15 y 1/2+ β ⁻ *	28.7 Cdll4 0+ 28.73	Cd115 53.46 h 1/2+ β·	Cd116 0+ 7.49	Cd117 2.49 h 1/2+ [*]	Cd118 50.3 m 0+ β.	Cd119 2.69 m 3/2+ β·	Cd120 50.80 s 0+ β.	μ μ Cdl21 Cdl22 13.5 s 5.24 s (3/2+) 0+ β· β·	
Ag105 4F.29 d 1/2- * EC	Ag106 2396 m 1+ εC,β·	Ag107 1/2- \$1.839	Ag108 237 m 1+ εC,β·	Ag109 1/2- 48.161	Ag110 24.6 s 1+ εC,β·	Ag111 7,45 d 1/2- [*]	Ag112 3130 h 2(-)	Ag113 537 h 1/2- [*]	Agll4 4.6 s 1+ β·	Ag115 20.0 m 1/2- *	Ag116 2.08 m (2)- [*]	Ag117 72.8 s (1/2-) β·	Ag118 3.76 s (1)- *	Ag119 2.1 s ^(7/2+) *	Ag120 123 s (3+) β· β· β·n Ag121 0.78 s (7/2+) β· β·n	11

The 8π Spectrometer at TRIUMF-ISAC

Researchers from 24 institutions from 8 countries.

>25 post-docs,8PhD, 13MSc, 1MPhys>43 peer-reviewed publications

Performed decay spectroscopy at TRIUMF-ISAC-I from Feb 2002 to Dec 2013

Nuclear Structure from High-Statistics Beta-Decay

P.E. Garrett et al., Phys.Rev. C 86, 044304 (2012)

P.E. Garrett, T.R. Rodríguez et al., Submitted to PRL (2019).

Beyond-mean-field calculations employing the symmetry conserving configuration method with the Gogny D1S energy density functional.

The agreement with the data for ¹¹⁰Cd is remarkable.

P.E. Garrett, T.R. Rodríguez et al., Submitted to PRL (2019).

The conclusion is that multiple shape-coexistence occurs in the Cd isotopes.

P.E. Garrett, T.R. Rodríguez et al., Submitted to PRL (2019).

Heyde & Wood, Rev. Mod. Phys. 83, 1467 (2011).

Shell-gap Energy ~+4-8MeV

$$E_{\rm intr}(0^+) = 2(\varepsilon_{j_{\pi}} - \varepsilon_{j'_{\pi}})$$

Heyde & Wood, Rev. Mod. Phys. 83, 1467 (2011).

Shell-gap Energy ~+4-8MeV

Monople shift $\sim \pm 0-1$ MeV

Pairing ~-2.5MeV

$$E_{\rm intr}(0^+) = 2(\varepsilon_{j_{\pi}} - \varepsilon_{j'_{\pi}}) - \Delta E_{\rm pair} + \Delta E_M$$

Heyde & Wood, Rev. Mod. Phys. 83, 1467 (2011).

$$E_{\text{intr}}(0^+) = 2(\varepsilon_{j_{\pi}} - \varepsilon_{j'_{\pi}}) - \Delta E_{\text{pair}} + \Delta E_M + \Delta E_Q$$

Heyde & Wood, Rev. Mod. Phys. 83, 1467 (2011).

the initial separation energy of the states (ΔE)

High-Statistics Beta-Decay of ⁹⁴Y to ⁹⁴Zr

A. Chakraborty et al., PRL 110, 022504, (2013)

Identification of Coexisting structures in ⁹⁴Zr

Coexisting Structures in ⁹⁴Zr: *First evidence of particle-hole excitation across a sub-shell gap*

Shape coexistence at N=60: Zr, Y, Sr, Rb Isotopes

Zr106

0+

Y105

Sr104

0+

66

ISAC studies around N=60:

S. Cruz et al., Phys. Letts. B 786, 94 (2018). A. Chester et al., PRC 96, 011302(R) (2017). Z.M. Wang, et al., PRC 93, 054301 (2016). R. Klawitter et al., PRC 93, 045807 (2016). J. Park et al., PRC 96, 014315 (2016). T.J. Procter et al., Eur. Phys. J. A 51, 23 (2015). A. Chakraborty et al., PRL 110, 022504 (2013). V.V. Simon et al., PRC 85, 064308 (2012).

Excitation energies

- Co-linear Laser Spectroscopy
- Transition Probabilities
 - TIGRESS+SHARC, TIGRESS+TIP, GRIFFIN+PACES+LaBr₃

Dramatic Change in Ground-State Structure

Spin assignments and charge radii from colinear Laser Spectroscopy

T.J. Procter et al., Eur. Phys. J. A 51, 23 (2015).

First direct observation of isomer in ⁹⁸Rb

The groundstate and isomer in ⁹⁸Rb have very similar charge radii.

Precision mass measurements from TITAN

R. Klawitter *et al.*, PRC 93, 045807 (2016).

E0 Transition Strengths

Recall that:

$$\begin{split} \Phi_1 &= \alpha \Psi_1 + \beta \Psi_2 \\ \Phi_2 &= -\beta \Psi_1 + \alpha \Psi_2 \end{split}$$

where: $\alpha^2 + \beta^2 = 1$

For a transition between these states the E0 strength, $\rho_{if} = \frac{\langle \Phi_1 | \mathbf{m}(E0) | \Phi_2 \rangle}{eR^2}$

where e = electric chargeand $R = 1.2A^{\frac{1}{3}}fm$ and

 $\langle \Phi_1 | \mathbf{m}(E0) | \Phi_2 \rangle \simeq \alpha \beta \Delta \langle r^2 \rangle$

Therefore the *E0* strength is directly proportional to the difference in deformation and the amount of mixing

$$M(E0) = \sum_{k} e_{k} r_{k}^{2}$$

 e_k = effective charge r_k = radius of *k*th nucleon

Knowledge of $\rho^2(E0)$ values

^{~120} new values in 15 years

Shape coexistence in ⁹⁸Sr

Minimization in two-state mixing using all available experimental data indicates:

9% mixing of 0⁺ state, 1.3% in 2⁺ states. Deformation difference in β of 0.38.

J. Park et al., PRC 96, 014315 (2016). ³⁰

Shape Coexistence at Z~40 N~60

Measurements of single particle levels in ^{95,96,97}Sr essential for a detailed description of this transitional region.

First series of experiments with CSB charge-bred beams at ISAC

31

S. Cruz et al. Phys. Letts. B 786, 94 (2018).

Shape coexistence around N=60

8+

3125

Shape coexistence around N=60

$$\rho^{2}(E0) = \left(\frac{3}{4\pi}\right)^{2} Z^{2} a^{2} (1-a^{2}) \left[\Delta(\beta^{2})\right]^{2}$$

 $a^2=0.40(14)$ and $\beta_{def}=0.31(3)$, $V_{mix} = 113$ keV

Shell model, proton valence space: glek a: protons inert in $[1p_{3/2}]^4$ glek b: excitations allowed to $[1p_{3/2}]^2[1p_{1/2}]^2$ glek c: $0g_{9/2}$ allowed (max 2)

Calculations work well for C^2S in d(⁹⁴Sr,p).

Exp.		Unmixed		glek (a)		glek ወ		glek ©	
E _x (keV)	C ² S	E _x (keV)	C^2S	E _x (keV)	C^2S	$E_{\rm X}$ (keV)	C^2S	$E_{\rm X}$ (keV)	C^2S
0	0.19(3)	0	0.19(3)	0	1.742	0	1.575	0	1.455
1229	0.22(3)	1314	0	-	-	-	-	-	-
1465	0.33(13)	1380	0.55(13)	2271	0.056	1691	0.098	444	0.105

T_{1/2} from H. Mach *et al*., PRC 41, 226 (1990).

Precision lifetime measurement in ⁹⁴Sr

A. Chester et al., PRC 96, 011302(R) (2017).

Precision lifetime measurement in ⁹⁴Sr

A. Chester et al., PRC 96, 011302(R) (2017).

Shape coexistence at N=60: Zr, Y, Sr, Rb Isotopes

Zr106

0+

Y105

Sr104

0+

66

ISAC studies around N=60:

S. Cruz et al., Phys. Letts. B 786, 94 (2018). A. Chester et al., PRC 96, 011302(R) (2017). Z.M. Wang, et al., PRC 93, 054301 (2016). R. Klawitter et al., PRC 93, 045807 (2016). J. Park et al., PRC 96, 014315 (2016). T.J. Procter et al., Eur. Phys. J. A 51, 23 (2015). A. Chakraborty et al., PRL 110, 022504 (2013). V.V. Simon et al., PRC 85, 064308 (2012).

Excitation energies

- Co-linear Laser Spectroscopy
- Transition Probabilities
 - TIGRESS+SHARC, TIGRESS+TIP, GRIFFIN+PACES+LaBr₃

What's next for ISAC?

- Many experiments already performed and under analysis in:
 - Structure of deformed nuclei
 - Shape coexistence
 - Octupole correlations and deformation

Hg isotopes from TI decay

Α

38

Shape coexistence in the neutron-deficient lead region: Lifetimes in the even-even 188-200Hg with GRIFFIN

- Lifetimes extracted in LaBr-LaBr-TAC-HPGe coincidences
- Employed the Generalized Centroid Shift method with 7 LaBr₃(Ce) crystals

B. Olaizola et al., PRC 100, 024301 (2019).

ISAC-II High Mass: 156,158,160 Er Coulomb Excitation with TIGRESS

A>29 beams require charge-breeding.

- Currently use ISAC CSB
- CANREB EBIS from 2019

S1750, J. Smallcombe & A.B. Garnsworthy HPTa target with TRILIS and CSB. Beams delivered to TIGRESS, Oct 2017:

¹⁵⁶Er²³⁺: 1x10⁸ total pps, 25% ¹⁵⁶Er, ~14hrs
¹⁵⁸Er²³⁺: 1x10⁸ total pps, 50% ¹⁵⁸Er, ~14hrs
¹⁶⁰Er²³⁺: 1x10⁸ total pps, 50% ¹⁶⁰Er, ~14hrs

3.9 AMeV Coulex on ⁵⁸Ni target

Will measure quadrupole moments of low-lying states to determine the shape of these nuclei, and investigate coexistence at *N*=88,90.

ISAC-II High Mass: ^{156,158,160}Er Coulomb Excitation with TIGRESS

Analysis by Paulina Siuryte (MPhys) and James Smallcombe

SPICE in-beam electron spectrometer

Shape coexistence in ⁷²Se

J. Smallcombe, W. Korten et al.

SPICE in-beam electron spectrometer

TRIUMF-ISAC is a beautiful place to do physics

Excellent instrumentation to explore nuclear shapes, coexistence and collective behaviors:

- GRIFFIN
- TITAN
- Colinear laser spec.
- TIGRESS
- TIP
- SPICE
- plus others...

There are some great results which are influencing present research directions.

Many exciting new results to come in the future!

