Gamma-Gamma Angular Correlation Measurements With GRIFFIN

Andrew MacLean University of Guelph

Gamma-Gamma Angular Correlations

 γ - γ angular correlations can be expressed as:

$$W(\theta) = 1 + \sum_{k=even}^{2L} a_k P_k(\cos\theta)$$

The a_k are coefficients are dependent on the nuclear spins, mixing ratios and multipolarities and $P_k(\cos\theta)$ are the Legendre polynomials.

In the GRIFFIN geometry there are 51 distinct opening angles between HPGe crystals. Solid angle effects are treated through Geant4 simulated templates

2

 γ

Gamma-Gamma Angular Correlations

 γ - γ angular correlations can be expressed as:

$$W(\theta) = 1 + \sum_{k=even}^{2L} a_k P_k(\cos\theta)$$

The a_k are coefficients are dependent on the nuclear spins, mixing ratios and multipolarities and $P_k(\cos\theta)$ are the Legendre polynomials.

In the GRIFFIN geometry there are 51 distinct opening angles between HPGe crystals. Solid angle effects are treated through Geant4 simulated templates

Gamma-Gamma Angular Correlations

For mixed transitions, e.g.. M1/E2, correlations depend strongly on the mixing ratio, δ . Geant4 simulated templates were made varying the mixing ratio for a 2 \rightarrow 2 \rightarrow 0 cascade.

To determine likeness of unique cascades relationships were investigated to comprehend these similarities.

Gamma-Gamma Angular Correlation Measurements With GRIFFIN

cosθ

1

1.1

0.8

0.9

Gamma-Gamma Angular Correlation Measurements With GRIFFIN

 A reduced chi squared is then made for each simulated template to determine which spin assignments and mixing ratios match the experimental data.

⁶⁶Ga Radioactive Beam Experimental Data

The first in-beam measurement was to investigate a $0^+ \rightarrow 2^+ \rightarrow 0^+$ cascade between the 1333-1039 keV gamma-rays following ⁶⁶Ga beta decay.

The distinct $0^+ \rightarrow 2^+ \rightarrow 0^+$ template yields a $X^2/v = 0.96$ when compared to experimental data, while all other spin sequences yield $X^2/v > 100.$

⁶⁶Ga Radioactive Beam Experimental Data

Nuclear Spins Legend

Cascade	[1]	[2]	δ (This work)	
833-1039 keV	-1.9(3)	-1.6(2)	-2.1(2)	
2752-1039 keV	-0.09(3)	-0.12(2)	-0.08(3)	

[1] M. R. Bhat, Nucl. Data Sheets 83, 83.[2] A. Gade, Phys. Rev. C 65, 054311.

13

⁶⁶Ga Radioactive Beam Experimental Data

⁶²Ga Superallowed Beta Decay Data (Preliminary)

With techniques demonstrated a preliminary experiment was preformed with a radioactive ⁶²Ga beam to resolve a recently disputed spin assignment to the 2.34 MeV excited state in ⁶²Zn.

In comparison to a previous experiment at TRIUMF, the high efficiency of GRIFFIN provided two orders of magnitude more statistics with half the number of decays using the 8π array.

⁶²Ga Superallowed Beta Decay Data (Preliminary)

With a beam rate of 1250 ions per second and a beta branch of 191ppm to the 2.34 MeV state, the measurement favoured the assignment of this state as a 0⁺. A higher statistic experiment will be run with GRIFFIN to make a definitive spin assignment for this state.

GRIFFIN at ISAC-I is a powerful new facility for gamma-gamma angular correlation measurements to establish nuclear spins and transition mixing ratios in decay spectroscopy with radioactive ion beams.

Thank You!

Superallowed ⁶²Ga

A. T. Laffoley, High-Precision Half-Life Measurement for the Superallowed Fermi β Emitters ¹⁴O and ¹⁸Ne, Ph.D. Thesis, University of Guelph K. G. Leach et al., Phys. Rev. Lett. **96**, 032002 (2013).

Previous Measurements To Assign Spin of 2.34 MeV State in ⁶²Ga

Previous Measurements To Assign Spin of 2.34 MeV State in ⁶²Ga

Crystal Efficiency Corrections

Efficiencies of different crystals can differ and effect the angular correlations.

Crystal Efficiency Corrections

Efficiencies for the opening angles of GRIFFIN after grouping and folding.

Isospin Symmetry Breaking Correction Calculations

Parent	ft	$\delta_{\rm C}^{({\rm X})}$	$\delta_{\mathrm{C}}^{(\mathrm{Y})}$	$\delta_{\rm C}^{({\rm Z})}$	$\delta_{\rm C}^{\rm (SV)}$	$\mathcal{F}t$	$\delta_{\rm C}^{(m exp)}$	χ^2_i	$\delta_{\rm C}^{\rm (SHZ2)}$	$\mathcal{F}t$
nucleus	(S)	(%)	(%)	(%)	(%)	(S)	(%)		(%)	(S)
$T_z = -1:$										
^{10}C	3041.7(43)	0.559	0.559	0.823	0.65(14)	3062.1(62)	0.37(15)	3.7	0.462(65)	3067.8(49)
^{14}O	3042.3(11)	0.303	0.303	0.303	0.303(30)	3072.3(21)	0.36(06)	0.8	0.480(48)	3066.9(24)
^{22}Mg	3052.0(70)	0.243	0.243	0.417	0.301(87)	3080.5(75)	0.62(23)	1.9	0.342(49)	3079.2(72)
³⁴ Ar	3052.7(82)	0.865	0.997	1.475	1.11(29)	3056(12)	0.63(27)	3.1	1.08(42)	3057(15)
$T_{z} = 0:$										
²⁶ Al	3036.9(09)	0.308	0.308	0.494	0.370(95)	3070.5(31)	0.37(04)	0.0	0.307(62)	3072.5(23)
$^{34}\mathrm{Cl}$	3049.4(11)	0.809	0.679	1.504	1.00(38)	3060(12)	0.65(05)	48.4	0.83(50)	3065(15)
42 Sc	3047.6(12)				0.77(27)	3069.2(85)	0.72(06)	0.5	0.70(32)	3071(10)
^{46}V	3049.5(08)	0.486	0.486	0.759	0.58(14)	3074.6(47)	0.71(06)	4.5	0.375(96)	3080.9(35)
50 Mn	3048.4(07)	0.460	0.460	0.740	0.55(14)	3074.1(47)	0.67(07)	3.1	0.39(13)	3079.2(45)
54 Co	3050.8(10)	0.622	0.622	0.671	0.638(68)	3074.0(32)	0.75(08)	2.0	0.51(20)	3078.0(66)
62 Ga	3074.1(11)	0.925	0.840	0.881	0.882(95)	3090.0(42)	1.51(09)	44.0	0.49(11)	3102.3(45)
74 Rb	3084.9(77)	2.054	1.995	1.273	1.77(40)	3073(15)	1.86(27)	0.1	0.90(22)	3101(11)
					$\overline{\mathcal{F}t} =$	3073.6(12)	$\chi^2 =$	112.2	$\overline{\mathcal{F}t} =$	3075.0(12)
					$ V_{\rm ud} =$	0.97397(27)	$\chi^2_d =$	10.2	$ V_{\rm ud} =$	0.97374(27)
					1 uu	0.99935(67)	Λu		1 uul	0.99890(67)

W. Satuła et al., Phys. Rev. C 86, 054316

⁶²Ga Structural Developments

P. Finlay et al. Phys. Rev. C 78, 025502 (2008). 24

Some ⁶²Ga Structural Developments - New Gammas

1933 keV

1900

1950

2000

Some ⁶²Ga Structural Developments - Corrected Levels

