

INVESTIGATION OF EXCITED 0⁺ STATES POPULATED IN THE ¹⁶²Er TWO-NEUTRON TRANSFER REACTION

CHRISTINA BURBADGE

WNPPC 2017

Motivation

- Nuclear deformation occurs away from closed shells
- Shape coexistence may be expected in regions of rapid change in deformation

P. Moller. Nuclear ground-state masses and deformations: FRDM(2012) Adapted from P. Fillip. Effects of Nulcear Deformation in Heavy Ion Collisions. Kent State University (2009)

Shape coexistence

• N~90 nuclei have excited states with a different level of deformation than their ground states

Kr-Sr: N=90: coexisting shapes coexisting shapes (oblate⊗prolate) (less-deformed more-deformed) SD N=60: coexisting shapes deformed spherical (less-deformed@more-deformed) 40 Ca Island of inversion: coexisting shapes (deformed@spherical) 16 spherical deformed

Motivation

C. Burbadge, University of Guelph

Strength into N=90 nucleus ^{152}Sm

N=90 strength in 154 Gd, 152 Sm

Why transfer reactions?

- Two-neutron transfers probe pairing correlations in the nucleus
- The reaction will not carry off much angular momentum, favouring L=0 transfers
- Strength of 0⁺ states in residual nucleus related to pairing mechanism

¹⁶²Er(p,t)¹⁶⁰Er reaction

- Angular distributions are compared to DWBA calculations using FRESCO to extract angular momentum
- Single-particle content is not known for two neutron transfer reactions is this a problem?

Single-Particle Dependence

C. Burbadge, University of Guelph

126

3p_{1/2}

Experiment

- ¹⁶²Er(p,t)¹⁶⁰Er experiment conducted at the Maier-Leibnitz-Laboratorium, Garching, Germany
- 22-24 MeV proton beam supplied by 14MeV Tandem Van de Graaff

Target Thickness Determination

¹⁶²Er target thickness extracted with optical model fit to elastic scattering data

Q3D Magnetic Spectrograph

Q3D magnetic
 spectrograph
 momentum analyzes
 reaction products using
 a focal plane detector

• Focal plane detector allows for particle identification

DWBA calculations - $0_1{}^+$ and $2_1{}^+$

• We are able to extract the angular momentum transferred in the reaction using the shape of the angular distribution!

Relative Cross Section

- Relative Cross Section gives a measure of the strength of the excited state relative to the GS
- Ratio of Exp/DWBA cross sections will provide a Qvalue correction for kinematics

¹⁶⁰Er spectrum at 30°

C. Burbadge, University of Guelph

 0_2 in N=92 isotones

C. Burbadge, University of Guelph

Isotopic trends in 0⁺ states

Summary

- 7 new excited 0⁺ states under 2.5 MeV identified with 0_2^+ population ~19 %
- Low-lying, highly populated first 0⁺ state consistent with the shape coexistence picture
- ^{162,164,166,168}Er(p,t) part of an experimental campaign at MLL investigating collective pairing transitions

Acknowledgments

P. E. GARRETT V. BILDSTEIN A. DIAZ VARELA M. R. DUNLOP **R. DUNLOP** D.S. JAMIESON D. KISLIUK J. LORANGER A. D. MACLEAN A. J. RADICH E. T. RAND C.E. SVENSSON

R. HERTENBERGER

H.-F. WIRTH

G.C. BALL

K.G. LEACH

WESTERN CAPE

TECHNISCHE

S. TRIAMBAK

T. FAESTERMANN

UNIVERSITÄT MÜNCHEN

Interpretation: Pauli-blocked $v_{11/2}$

- 0₂⁺ called "second vacuum state" due to the resemblance of level scheme to GS excitations
- The steeply upsloping v11/2[505] orbital is blocked in ¹⁵⁵Gd
- Thought to play a role with pairing in other isotopes in the N=90 region

Similarity to $v_{11/2}$ orbital

¹⁵⁵Gd band structure

Single-Particle Dependence

C. Burbadge, University of Guelph

126

¹⁵⁴Gd level scheme

• Second vacuum state has same level hierarchy as ground state excitations

Comparison to ¹⁵²Sm level scheme

Transfer strength in N=90 region

- Large GS→GS transition strengths until ¹⁵²Sm, ¹⁵⁴Gd
- For N<90

 population to 0₂⁺
 and 0₃⁺ strong
- For N>90 population only to 0_2^+ strong

 150 Sm(t,p) 152 Sm

Configuration of 0_2^+ states in N = 90 nuclei

- 2v are transferred from down-sloping prolate to up-sloping [505]11/2⁻ oblate orbital
- This configurationdependent pairing decouples the high density of down-sloping prolate orbitals from the low density of up-sloping oblate orbitals
- Formation of "vacuum" state

Nilsson Diagram

 0_2 in N=92 isotones

C. Burbadge, University of Guelph

Excited 0⁺ States

Focal Plane Detector

S. Chagnon-Lessard Slide 32

¹⁶²Er(p,t)¹⁶⁰Er transfer reaction

