

Canada's national laboratory for particle and nuclear physics and accelerator-based science

²²Ne(p, γ)²³Na and the origin of ²³Na

Annika Lennarz Postdoc | Division of Physical Sciences | TRIUMF

WNPPC, Banff February 18th, 2017

²²Ne(p, γ)²³Na reaction affects ²³Na abundance in various stellar sites:

- Hot-bottom burning (HBB) in AGB stars (M>4 M_{\odot})
- Convective carbon-shell burning in **massive stars** (competes with ${}^{22}\text{Ne}(\alpha,n){}^{25}\text{Mg}$)
- **Nova** nucleosynthesis (0.15 < T < 0.45 GK)

Increased interest in abundance prediction since discovery of **Na-O anticorrelation** in red giant stars of globular clusters

Based on Illiadis et. al. Nucl. Phys. A 841, 251 (2010)

²⁰Ne(p, γ)²¹Na($e + \nu$)²¹Ne(p, γ)²²Na($e + \nu$)²²Ne(p, γ)²³Na(p, α)²⁰Ne

- NeNa cycle of H-burning (T>0.07 GK)
- Low contribution to energy budget
- <u>BUT:</u> Importance for stellar nucleosynthesis
- Affects abundance of elements between ²⁰Ne & ²⁷Al
- Rate of NeNa cycle determined by ²⁰Ne(*p*, γ)²¹Na
- Highest uncertainty in ${}^{22}Ne(p,\gamma){}^{23}Na$

NeNa cycle

Hot bottom burning

- AGB stars (M>4 M_{\odot}): **HBB** occurs at base of convective envelope
- 60 MK < T < 100 MK material is processed via CNO, NeNa & MgAI cycles:
 - Increase Na & Al surface abundances
 - Decrease Mg abundance
- Oxygen depletion via ON cycle
- **Mixing** with surface through convection
- **Ejection** in strong stellar winds
- -> Anomalies in O, Na, Mg, Al abundances in GC stars as a result of "pollution" from AGB stars undergoing HBB?

 \rightarrow Abundance patterns \rightarrow study nucleosynthesis pathes in all cycles!

core

RIUMF

5

- Uncertainties in ωγ for (until recently unobserved) **low-energy resonances**
- → **Discrepancies** between compilations by up to a factor of 1000 (T~0.08GK)
- → Abundance variations for nuclides between ²⁰Ne & ²⁷Al by up to 2 orders of magnitude!

First data on several low-energy resonances published by LUNA group

 $ω\gamma(E_{cm}=149 \text{ keV}) = (1.48(10) \times 10^{-7}) \text{ eV}$ $ω\gamma(E_{cm}=181 \text{ keV}) = (1.87(6) \times 10^{-6}) \text{ eV}$ $ω\gamma(E_{cm}=249 \text{ keV}) = (6.89(16) \times 10^{-6}) \text{ eV}$ (Cavanna et. al. PRL 115, 252501 (2015))

 \rightarrow Confirmation with different method needed!

Recent measurement of low-energy resonances by Kelly et. al. (PRC **95**, 015806 (2017)) at Laboratory for Experimental Nuclear Astrophysics (LENA)

Recent measurement of low-energy resonances by Kelly et. al. (PRC **95**, 015806 (2017)) at Laboratory for Experimental Nuclear Astrophysics (LENA)

DRAGON – Detector of Recoils And Gamma-rays Of Nuclear reactions

Windowless gas target

- BGO γ-detection array
- MEME mass separator (3)

4

Recoil detection system

$$\frac{\lambda^2}{2} \frac{M+m}{m} \epsilon^{-1} \omega \gamma$$

$$\frac{Magnetic}{U_{L}} \frac{Magnetic}{U_{L}} \frac{Magnetic}{U_{L$$

TRIUMF

- High beam intensities (MCIS, 2x10¹² pps at DRAGON)
- First direct measurement in inverse kinematics
 - E_{cm}=1222 keV
 - E_{cm}=632 keV
 - E_{cm}=612 keV
 - E_{cm}=458 keV
 - E_{cm}=377 keV
 - E_{cm}=322 keV
 - E_{cm}=249 keV
 - E_{cm}=181 keV
 - E_{cm}=149 keV (lowest energy received at DRAGON)
 - Direct capture measurements E_{cm}=200 keV to 400 keV

E_{cm} = 632 keV – Previous measurements

- ωγ=**0.032**_{-0.009}+0.024 eV (Depalo et. al. PRC 92, 045807 (2015))
- ωγ=**0.35(1) eV** (Meyer & Smit, NPA 205, 177 (1973))

10⁰ $N_{A}\langle\sigma\;\nu\rangle_{i}$ / $N_{A}\langle\sigma\;v\rangle_{Sallaska}$ (2013) 10-1 Meyer et. al-(19 10^{-2 |} $E_{\rm p}^{\rm res} = 436 \, \rm keV$ = 479 keV $E_{\rm p}^{\rm res} = 639 \, \rm keV$ 10-3 0.5 0.9 0.2 0.3 0.4 0.6 0.7 0.8 **Temperature** [GK]

Order of magnitude deviation!

- \rightarrow Contribution to reaction rate <1%
- Is this resonance completely negligible?
- Worth confirming with different direct method

Depalo et. al. PRC 92, 045807 (2015)

E_{cm}=632 keV – DRAGON measurement

- Yield measurements at 3 different pressures
- Contribution from strong 612 keV resonance excluded (γ-ray spectrum & pressure variation)
- Resonance centered in target at 3 Torr
- High statistics

RIUMF

E_{cm}=632 keV – DRAGON measurement

13

6 previous measurements (2 in 2015)

- Recent ωγ=0.583(43) eV (Kelly et. al. PRC 92, 035805 (2015) at van de Graaff acc. (LENA))
- Recent ωγ=0.594(38) eV (Depalo et. al. PRC 92, 045807 (2015) at HZDR, relative to 1.222 MeV resonance

value!

E_{cm}= 458 keV – DRAGON measurement

- ~7 hrs of data \rightarrow High statistics
- High beam suppression with q_{max}=6⁺ (q_{beam}=4⁺)
- Measured charge-state distribution and stopping power
- Analysis (preliminary!) → ωγ is lower than reported recently & closer to Longland et. al.

BGO hit pattern - 249 keV resonance, E <1.5

bgoz0

Low-energy resonance E_{cm} =249 keV

- BGO gates + simulation to reduce background rate
- Analysis (preliminary) shows agreement with latest value from Depalo et. al.

Challenging measurement...

- Low resonance strength between 1.8*10⁻⁶ eV and 2.3*10⁻⁶ eV
- Second lowest energy ever received at DRAGON
- Recoil cone angle at limit of geometric acceptance
- Increased beam emittance → Higher background level

- *Direct* study of ²²Ne(*p*, γ)²³Na capture rate with DRAGON in *inverse kinematics*
- Relevant for nucleosynthesis of nuclides from ²⁰Ne to ²⁷Al
- DRAGON collected data for **9 on-resonance** measurements + DC measurements

Preliminary analysis:

- Deviation for 632 keV ωγ from HZDR result BUT agreement for 612 keV res.
- **458 keV** ωγ lower than 2015 results (HZDR & LENA)
- 249 keV resonance strengths in agreement with previous result
- Analysis of **181 keV** low-energy resonance (ωγ possibly lower) and DC contribution in progress

Summary

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Many thanks to the DRAGON collaboration!

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f 🖸 🏏

RTRIUMF

Particle detection – end detectors

DRAGON Objectives:

- Study energy range relevant to AGB stars and novae for temperatures between 0.1 GK and 0.4 GK
- Direct measurement of E_{cm}= 149, keV, 181 keV, 249 keV resonances
- Re-measure "well-known" reference resonances (E_{cm}=458, 612, 632, 1222 keV)
- Provide more stringent limits on cross sections between 200 and 400 keV (also **Direct capture** contribution)

Radiative capture in inverse kinematics

- (p, γ) and (α, γ) reactions
- Mainly resonant capture:
 A + b = C + γ

Figures from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

Particle detection - DSSSD

111110000000000000

- Good energy resolution (charged particle detection)
- Timing (10ns) resolution superior to IC
- Combine with fast signal (prompt γ-detector)

\rightarrow Precise TOF measurements

• **BUT:** Sensitive to radiation damage!

Annika Lennarz - Workshop on Recoil Separators for Nuclear Astrophysics

Defines range of reactions that can be measured!

- **Maximum** possible **recoil angle** when E_{γ} is maximized for $E_{\gamma} = Q + E_{c.m.}$
- AND emission perpendicular to incident beam direction ($\theta_3 = \pi/2$)
- **<u>Nominal acceptance</u>** (w.r.f to zero):

21 mrad & +/- 4% in E

RIUMF

DRAGON – charge selection

- 21m length (target to focal plane)
- Ion optical configuration: M-E-M-E design

 $F = \frac{dp}{dt} = q(\varepsilon + \upsilon \times B)$

Charge selection

- Beam & recoils emerge in range of charge states
- Initial charge selection prevents ions in non-selected q from striking smooth electrodes at glancing angles
- Spacial separation in focal plane

 $\Delta \rho \, / \, \rho \approx \Delta q \, / \, q$

	MD1	MD2
ρ	1.00 m	0.813m
φ	50°	75°

All measurements of cross sections or resonance strengths require knowledge of the number of particles incident on the target!

Options:

Elastic scattering of beam ions on target

(surface barrier detectors) + cup readings

Annika Lennarz - Workshop on Recoil Separators for Nuclear Astrophysics

All measurements of cross sections or resonance strengths require knowledge of the number of particles incident on the target!

Options:

Monitor prompt γ -radiation & β^+ -decay via annihilation (Nal)

Figure from C. Ruiz et. al., Eur. Phys. A 50, 99 (2014)

E_{cm}=1222 *keV*

htemp

Entries

Mean

RMS

10

3032

5.08

2.559

- \rightarrow Re-measured strong reference resonance ($\omega\gamma$ =10.8(7) eV)
- Measurements at 2 charge states (q=8⁺, q=9⁺) & 2 intensities
- Strong resonance, high statistics, low background
- Is it stronger?
- Cross check bgo efficiency simulation with coincidence and singles spectra

e0_conv {e0_conv>0.5}

- Option to cross-check simulated BGO efficiency with data
- Consistent results using singles & coinc. spectra

head.bgo.esort[0] {head.bgo.esort[0]>0}

