

GEOCHEMICAL MEASUREMENT OF THE HALF-LIFE OF THE DOUBLE-BETA DECAY OF ⁹⁶Zr Adam Mayer

D. Frekers², M.E. Wieser¹, R.I. Thompson¹, J. Dilling³

¹Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada ²Institut für Kernphysik, Westfälische Wilhelms-Universität, Münster, Germany ³TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada

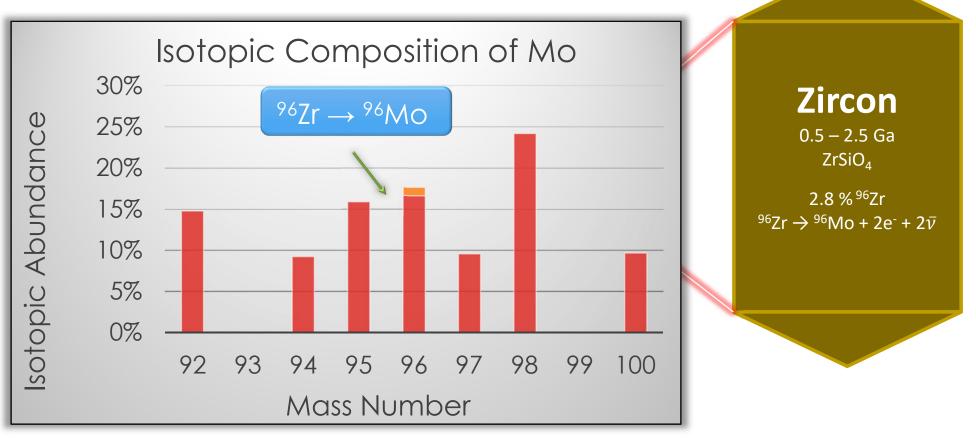
- Studying the $\beta\beta$ -decay of ${}^{96}Zr \rightarrow {}^{96}Mo$
 - Valuable system to study neutrinos
- We are studying two properties:
 - Q value (done and published)
 - Half-life

- ⁹⁶Zr is of particular interest:
 - One of the largest Q values and shortest half-lives
 - Unstable against single β -decay (4th order forbidden)
- Two previous measurements of half-life did not agree:
 - Geochemical measurement: 0.94(32) x 10¹⁹ a
 - Direct count-rate measurement: $2.35(30) \times 10^{19} a$

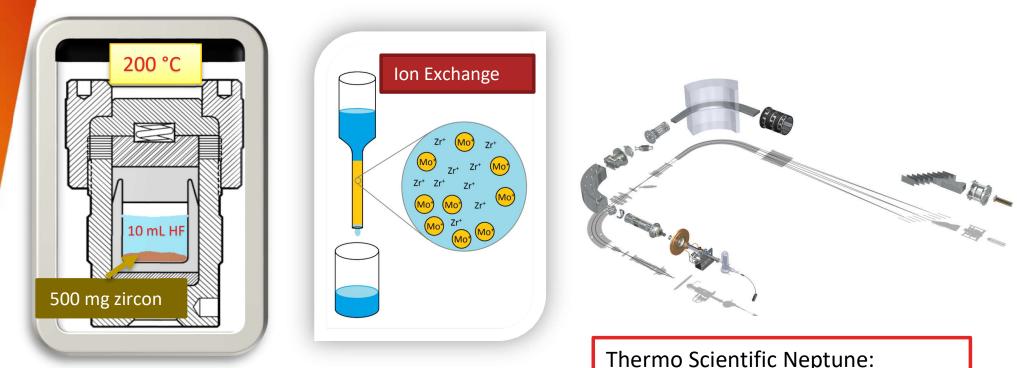
- Zircon, or ZrSiO₄, is a highly stable mineral inclusion found in many types of host rocks
- Remain a closed system over billions of years
 - Evidenced by accurate U-Pb ages
- Large amount of zirconium (~50 wt%)
- Very little molybdenum (~ ppm)

Double-beta decay half-life by stable isotope geochemistry

 Re-examine measurements by Wieser and DeLaeter in 2001


> **Zircon** 0.5 – 2.5 Ga ZrSiO₄

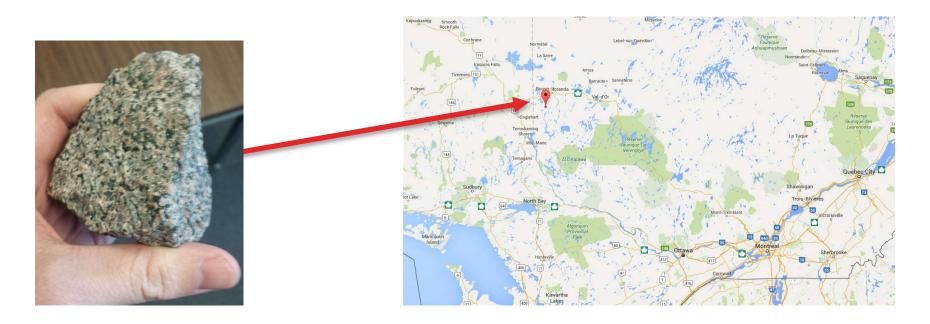
2.8 % ⁹⁶Zr ⁹⁶Zr → ⁹⁶Mo + 2e⁻ + 2v


Double-beta decay half-life by stable isotope geochemistry

 Re-examine measurements by Wieser and DeLaeter in 2001

Zircon sample prep and analysis

Thermo Scientific Neptune: Multi-collector inductively coupled plasma mass spectrometer


2001 measurements performed with Thermal Ionization MS

	Previous (TIMS)	New (MC-ICP- MS)
Sensitivity	100 ng Mo	10 ng Mo
Chemistry blank	10 ng Mo	1 ng Mo
Precision	1.0 ‰	<0.1 ‰

- All related measurements performed in house
- Zircons with a wide range of ages, from 500 Ma to 2.5 Ga

- Repeat previous measurement with same samples, from Capel sands in Western Australia:
 - 3 samples with ages from 900 1000 Ma
- Further, we will add at least 2 more data points:
 - TEMORA-2 reference (Australia): 417 Ma
 - 1242 reference: 2679 Ma

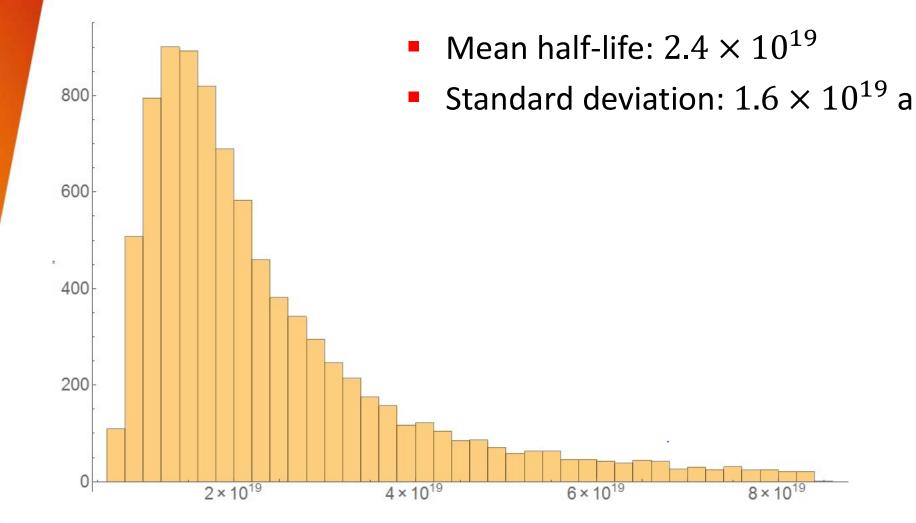
$$t_{1/2} = \frac{-t \ln(2)}{\ln(1 - n_d/n_0)}$$

 n_d daughter product: $n_d({}^{96}Mo) = \frac{m_{Mo}N_A}{A_W(Mo)} C({}^{96}Mo) \delta({}^{96}Mo)$ n_0 parent: $n_0({}^{96}Zr) \cong \frac{m_{Zr}N_A}{A_W(Zr)} C({}^{96}Zr)$

$$t_{1/2} = \frac{-t \ln(2)}{\ln(1 - n_d/n_0)}$$

 n_d daughter product: $n_d({}^{96}Mo) = \frac{m_{Mo}N_A}{A_W(Mo)} C({}^{96}Mo) \delta({}^{96}Mo)$ n_0 parent: $n_0({}^{96}Zr) \cong \frac{m_{Zr}N_A}{A_W(Zr)} C({}^{96}Zr)$

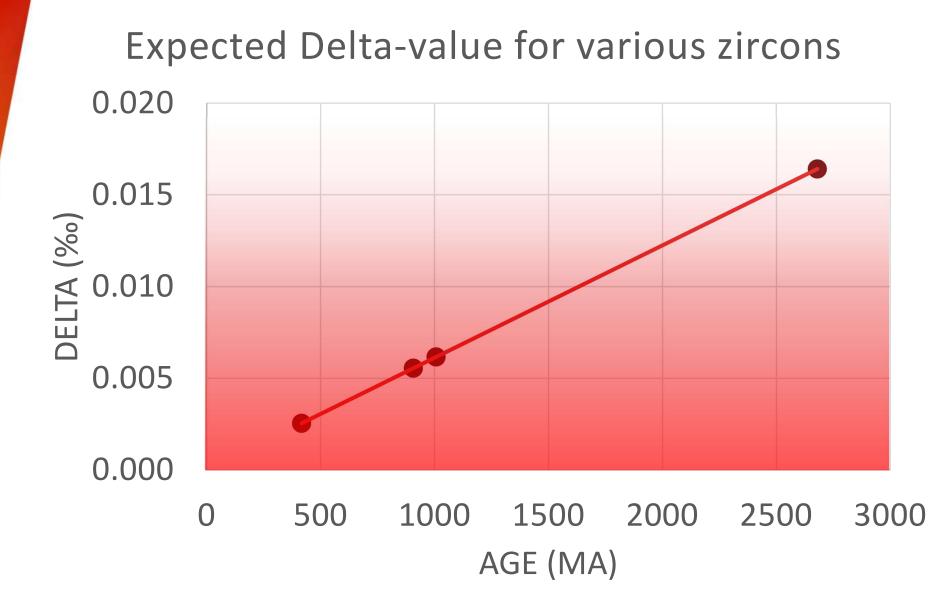
$$\frac{n_d}{n_0} = \frac{m_{Mo}}{m_{Zr}} \frac{A_W(Zr)}{A_W(Mo)} \frac{C({}^{96}Mo)}{C({}^{96}Zr)} \delta({}^{96}Mo)$$


Simulate results: Input parameters


	Value	Uncertainty
AwZr	91.224	0.002
AwMo	95.95	0.01
c96Zr	0.0280	0.0009
c96Mo	0.16673	0.00003
mZr (g)	0.250	0.010
mMo (pg)	250	50
Age (Ga)	2.68	0.05
δ 96* (permil)	0.016	0.010

* δ 96 predicted based on half-life: 2×10^{19} a

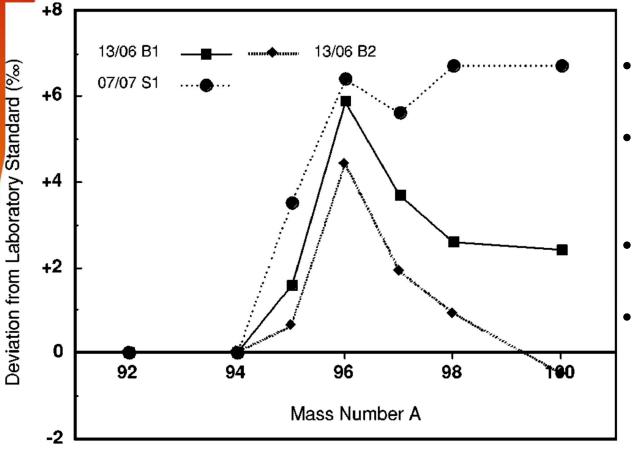
Simulation Results



- By varying one parameter at a time, we can see the individual contributions to the uncertainty.
- The total uncertainty is: $\sqrt{\sum_i \sigma_i^2}$
- The relative contribution is: $\frac{\sigma_i^2}{\sum_i \sigma_i^2}$

Variable	Contribution (%)
AwZr	7.0E-11
AwMo	1.6E-09
c96Zr	1.6E-04
c96Mo	4.5E-09
mZr	2.3E-04
mMo	8.0E-03
Age	1.4E-07
delta96	99.99

Various ages of zircons


- Wieser and DeLaeter did not compare the decay product directly to the parent
- They instead compared to the parallel fission decay of ²³⁸U
 - [²³⁸U] = 200 ppm
 - $t_{1/2} = 4.47 \times 10^9 \text{ a}$
 - SF = 5.45×10^{-5} %
 - $^{97-100}$ Mo fission yield: $\sim 6 \%$

- Wieser and DeLaeter did not compare the decay product directly to the parent
- They instead compared to the parallel fission decay of ²³⁸U
 - [²³⁸U] = 200 ppm
 - $t_{1/2} = 4.47 \times 10^9 \,\mathrm{a}$
 - SF = 5.45×10^{-5} %
 - $^{97-100}$ Mo fission yield: ~6 %
 - Back of the envelope "partial half-life" for ${}^{238}U \rightarrow {}^{97}Mo$: $\mathbf{2} \times \mathbf{10^{19}} \mathbf{a}$ (adjusted for U-concentration relative to 96 Zr)
- So long as the excess seen in the U fission decay products is similar to the ⁹⁶Mo excess, the determined half-life would be the right order of magnitude...

So where did the previous result come from?

Wieser and DeLaeter 2001 – PRC 46

- ²³⁸U decay products are inconsistent, especially ¹⁰⁰Mo
- These delta-values only possible if Zr:Mo is around 370M:1
- I've measured Zr:Mo in several samples to be around 1M:1
 - Therefore delta values should be 370x smaller (unresolvable)

- Previous measurements had significant errors contributing to the measurement
- I still aim to prove this conclusively by significantly improving the precision of the measurements
- If possible, I will try to achieve a more direct geochemical half-life measurement using the 2.7 Ga zircons

At the limit of what can be measured using this technique