

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Monte Carlo EDM Simulations for the UCN Experiment at TRIUMF

February 18, 2017 Sanmeet Chahal | University of Ottawa | TRIUMF

Project Overview

Goal: Measure the **electric dipole moment** (EDM) of the **neutron** (nEDM). Precision goal: 10⁻²⁷ e•cm.

Motivation: Explain matter/antimatter asymmetry Physics beyond the Standard model

Neutron type	Mean Energy (ev)	Velocity (m/s)	Temperature (K)
Fast	$> 500 \cdot 10^{3}$	> 10 ⁷	> 10 000
Thermal	$25 \cdot 10^{-3}$	2200	300
Ultracold	$< 300 \cdot 10^{-9}$	< 10	< 0.002

Outline

1. EDM Measurement

- Precession and EDM
- Ramsey Cycle
- Simulation Requirements

2. Simulation program

- PENTrack
- B0 and E fields
- Geometric phase effect
- Benchmark tests

3. Cell Orientation Study

- Method
- Results

Precession and EDM

Ramsey Cycle

- 1. **Polarized** n & **constant** B₀ field.
- 2. B_1 pulse $\rightarrow \pi/2$ spin flip.
- 3. Free precession in transverse plane.
- 3. Second B_1 pulse $\rightarrow \pi/2$ spin flip.
- 4. Count neutrons' spin state \rightarrow flip E field.

Ramsey Cycle

1. **Polarized** n & **constant** B₀ field.

2.
$$B_1$$
 pulse $\rightarrow \pi/2$ spin flip.

3. Free precession in transverse plane.

3. Second B_1 pulse $\rightarrow \pi/2$ spin flip.

4. Count neutrons' spin state \rightarrow flip **E field**.

EDM Simulation Requirements

Fields

B₀ field – **starting** polarization

B₁ field – Do **spin flip**.

Other features vxE effect : SR → mot. B field

Comagnetometer atoms – reduce $\Delta d_{f,n}^{sys}$

Outline

1. EDM Measurement

- Precession and EDM
- Ramsey Cycle
- **Simulation Requirements**

2. Simulation program

- PENTrack
- BO and E fields
- Geometric phase effect
- Benchmark tests

3. Cell Orientation Study

- Method
- Results

PENTrack

E Field and vxE

Ideal Model

- Static
- z-aligned
- Homogenous field (no gradient)
- vxE added

$$\mathbf{E} = \begin{bmatrix} 0\\0\\x \end{bmatrix} = \begin{bmatrix} 0\\0\\10^6 \text{ V/m} \end{bmatrix}$$

Geometric Phase Effect

Geometric Phase Effect

Geometric Phase Effect

FIG. 11. (Color online) False EDM's obtained by computer simulation in the $|\omega_r| < |\omega_0|$ case. The results shown are for 2D specular reflection following peripheral and diameter orbits and for 3D diffuse reflection. The analytic result of Eq. (29) is shown as a smooth curve. Other parameters were $\partial B_{0z}/\partial z = 1$ nT/m and B_0 $=1 \ \mu T.$

False EDM (10⁻²⁶ ecm)

1.5

Benchmark Tests

Benchmark Tests

Outline

1. EDM Measurement

- Precession and EDM
- Ramsey Cycle
- Simulation Requirements

2. Simulation program

- PENTrack
- B0 and E fields
- Geometric phase effect
- Benchmark tests

3. Cell Orientation Study

- Description
- Results

Optimum cell orientation

Goal: Determine effect of cell orientation on the $d_{f,n}$.

Procedure: 1. Energy spectrum from filling efficiency simulation.2. Determine d_{f,n} in both orientations.

Results

N. Christopher. "An amalgamation of work on the UCN source and nEDM experiment at TRIUMF". Vancouver, TRIUMF, 2016.

orientation study

Plug

(a)

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Questions?

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Winnipeg | York

References

[1] Golub R, Richardson D, Lamoreaux S K. 1991. Ultra Cold Neutrons, First edition. Adam Hilger: IOP Publishing Ltd.

[2] Losekamm, Martin. *Monte Carlo Simulations and High Voltage Tests for the Future UCN Source and nEDM Experiment at TRIUMF* [Bachelor's thesis]. Technische Universität München, 2013.

[3] Schreyer, W. 2011. Monte Carlo-simulations for the neutron lifetime experiment PENeLOPE [dissertation]. Technische Universität München.

[4] Knecht, Andreas. 2009. Towards a New Measurement of the Neutron Electric Dipole Moment [dissertation]. University of Zurich.

[5] Zheng, Wangzhi. 2012. Experiments of Search for Neutron Electric Dipole Moment and Spin-Dependent Short-Range Force [dissertation]. Duke University.

[6] Adachi, T, Altiere, E et al. 2015. International UCN Source and nEDM Experiment at TRIUMF Conceptual Design Report 2015 [internal report]. TRIUMF: Vancouver.

[7] Picker, R. 2008. PENeLOPE and AbEx On the Way Towards a New Precise Neutron Lifetime Measurement [dissertation]. Technische Universität München.

References

[8] Abulnaga, M. Winter 2015 CO-OP Term Report. Vancouver: TRIUMF, 2015.

[9] Barré, E. Developing the UCN experimental facility at TRIUMF. Vancouver: TRIUMF, 2014.

[10] Kaiser, H. "Course notes: Neutron Optics and Neutron Interferometry". Bloomington: IUCF, 2006.

[11] Lambert, J.H. *Photometria sive de mensure et gradibus luminis colorum et umbra* (Eberhard Klett, Augsburg, 1760).

[12] Heule, Stefan. *Production, Characterization and Reflectivity Measurements of Diamond-like Carbon and other Ultracold Neutron Guide Materials* [dissertation]. Universität Zürich, 2008.

[13] Atchison, F., Daum, M., Henneck R., et al. *Diffuse reflection of ultracold neutrons from low roughness surfaces*, Eur. Phys. J. A 44 (2010) 23.

[14] Pierre, E (personal communication, May 26 - June 22, 2015).

[15] Lloyd, E. *Guide Topologies Parameters*. Vancouver: TRIUMF, 2014.

[16] Chin, M. UCN guide topologies and kink (Internal report). Vancouver: TRIUMF, 2015.

Backup Slides

Ramsey Resonance Curve

Ramsey Resonance Curve

25

Total Energy Distribution

UCN Experiment

Topology 3:

The Y

Topology 4:

Topology 2: E

Topology 1:

Simulation Purpose

"Determine optimum guide layout"

Benchmark Test

False EDM vs. average planar velocity

Neutron Precession Test

Gradient Comparison

B₀ Field Formulas

Single Variable B₀ field Tests

Single Variable B₀ field

35

Benchmark Test

Mercury

Comagnetometers (¹⁹⁹Hg)

PENTrack: only p⁺, e⁻, and n Add xenon and mercury atoms

Comagnetometers (¹²⁹Xe)

Dual Comagnetometer

- Hg-199 and Xe-129 occupy cell volume
- Monitor changes in $B_0 \rightarrow$ reduce systematic error

Comagnetometer Wall Interactions Current Status

Specular and diffuse reflection model

Pendlebury: "...no dependence of the results on surface reflection law"

Implement corrugated wall model + sticking time

Future

Reflection Models

Specular Model

- Definition of model:
 - Ideal surface
 - Law of Reflection: $\theta_f = \theta_i$
 - Snells' law: $n \approx 1 \frac{\lambda^2 N}{2\pi} \sqrt{b_c^2 (\frac{\sigma_r}{2\lambda})^2} + i \frac{\lambda N \sigma_r}{4\pi}$
 - » n = index of refraction
 - » N = nuclei number density
 - » b_c = scattering length
 - » σ_r = total loss cross section
 - » λ = neutron de Broglie wavelength

Lambert's Model

- "Radiant intensity observed any angle is directly proportional to cosine of the direction of incidence and the normal"
- $I(\theta_f) = I_0 \cdot \cos(\theta_f)$

Micro-roughness Model

 Surface roughness modelled by Guassian peaks with Gaussian distribution

$$- f(\vec{r}) = f(r) = b^2 \exp[-\frac{r^2}{2w^2}]$$

- Dependent on θ_i
- Energy dependent
- Material dependent

Neutron and CP violation

- 1. Consider neutron with d_n and $\mu \rightarrow apply$ time reversal
- 2. d_n remains unchanged but μ reverses
- 3. T-symm. violated \rightarrow CP violated

Monte Carlo (MC) Simulations

"Use random numbers to sample different probability distributions."

Example of Monte Carlo Step

Precession

"Rotation of the axis of rotation"

Stronger field \rightarrow **Faster** precession (ν)

Motivation

Explanation for matter/antimatter asymmetry

