Spin Polarizability of a Proton via Measurement of Nuclear Structure Observable with Polarized Target and Polarized Beam at MAMI

Dilli Paudyal

University of Regina

WNPPC, Banf, Alberta, February 16 - 19, 2017

Nuclear Compton Scattering and polarizabilities

Expand the Hamiltonian in incident- photon energy.

● Second Order → Scalar Polarizabilities

$$H_{\text{eff}}^{(2)} = -4\pi \left[\frac{1}{2} \frac{\alpha_{\text{E1}}}{\alpha_{\text{E1}}} \vec{E}^2 + \frac{1}{2} \frac{\beta_{\text{M1}}}{\beta_{\text{M1}}} \vec{H}^2 \right]$$
(1)

● Third Order → Spin Polarizabilities

$$H_{eff}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \vec{E}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \vec{H}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$
(2)
where, $\vec{E} = \partial_t \vec{E}$, $\vec{H} = \partial_t \vec{H}$, $E_{ij} = \frac{1}{2} (\partial_i E_j + \partial_j E_i)$ and $H_{ij} = \frac{1}{2} (\partial_i H_j + \partial_j H_i)$

Previous Results on Spin Polarizabilities

• Forward spin polarizability (Ahrens et al., PRL87, 022003 (2001))

$$\gamma_{0} = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1M1} - \gamma_{M1E2}$$

$$= -\frac{1}{4\pi^{2}} \int_{\omega_{th}}^{\infty} \frac{\sigma_{3/2}(\omega) - \sigma_{1/2}(\omega)}{\omega^{3}} d\omega, \qquad (3)$$

$$= (-1.0 \pm 0.08 \pm 0.10) \times 10^{-4} fm^{4}$$

Backward spin polarizability (Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005))

$$\gamma_{\pi}^{\text{disp.}} = -\gamma_{\text{E1E1}} - \gamma_{\text{E1M2}} + \gamma_{\text{M1M1}} + \gamma_{\text{M1E2}}$$
$$= (8.0 \pm 1.8) \times 10^{-4} \text{fm}^{4}$$

• Note: $\gamma_{\pi}^{\pi^0 - \text{pole}}$ contributes -46.7 ×10⁻⁴ fm⁴.

-1° - ---

(4)

Proton Spin Polarizability Predictions

	K-mat.	HDPV	DPV	L_{χ}	$HB\chiPT$	$B\chi PT$
γ_{E1E1}	-4.8	-4.3	-3.8	-3.7	-1.1 ± 1.8 (th)	-3.3
γ_{M1M1}	3.5	2.9	2.9	2.5	2.2 ± 0.5 (st) ± 0.7 (th)	3.0
γ_{E1M2}	-1.8	-0.02	0.5	1.2	-0.4 ± 0.4 (th)	0.2
γ_{M1E2}	1.1	2.2	1.6	1.2	1.9 ± 0.4 (th)	1.1
γ_0	2.0	-0.8	-1.1	-1.2	-2.6	-1.0
γ_{π}	11.2	9.4	7.8	6.1	5.6	7.2

Spin-polarizabilities in units of 10⁻⁴ fm⁴.

- K-mat : Kmatrix \Rightarrow Kondratyuk et al., PRC 64, 024005 (2001)
- HDPV, DPV: Dispersion Relation ⇒ Holstein et al., PRC 61 034316 (2000), Drechsel et al., Phys.Rev. 378 99 (2003), Pasquini et al., PRC 76 015203 (2007).
- L_{χ} : Chiral Lagrangian \Rightarrow Gasparyan et al., NP A866 79 (2011)

• $HB_{\chi}PT$, $B_{\chi}PT$: Heavy Baryon & Covariant Chiral PT \Rightarrow J. A. McGovern et al., Eur. Phys. J.A 49,12 (2013)

Best Way to extract Spin Polarizabilities.

• Spin polarizabilities appear in the effective interaction Hamiltonian at third order in photon energy

• It is in the \triangle (1232) resonance region ($E_{\gamma} = 250 - 350$ MeV) where their effect becomes significant.

• In this energy region, it is possible to accurately measure polarization asymmetries using a variety of polarized beam and target combinations

- The various asymmetries respond differently to the individual spin polarizabilities at different E_{γ} and θ .
- Measure three asymmetries at different E_{γ} , θ .

Our plan is to conduct a global analysis:

- include constraints from "known" γ_0 , γ_{π} , α_{E1} and β_{M1} .
- extract all four spin polarizabilities independently with small statistical, systematic and model-dependent errors.

Double Polarization Asymmetry \sum_{2z}

Left helicity state of the beam, target Polarized in +z direction

 (σ_{+z}^L) .

Right helicity state of the beam, target Polarized in +z direction

 $(\sigma^R_{+z}).$

Left helicity state of the beam, target Polarized in -z direction

$$(\sigma_{-z}^L)$$
.

Right helicity state of the beam, target Polarized in -z direction

 (σ_{-z}^R) .

$\sum_{\rm 2z}$ in terms of Cross section and Number of events

$$\sum_{2z} = \frac{1}{P_{\gamma}P_t} \left(\frac{\sigma_{+z}^R - \sigma_{+z}^L}{\sigma_{+z}^R + \sigma_{+z}^L} \right), \tag{5}$$

 The degree of target polarization is different for positively and negatively polarized target, so in terms of Number of events the Asymmetry formula is

$$\sum_{2z} = \frac{1}{P_{\gamma}} \left(\frac{(N_{+z}^{R} + N_{-z}^{L}) - (N_{+z}^{L} + N_{-z}^{R})}{P_{+z}(N_{+z}^{R} + N_{-z}^{L}) + P_{-z}(N_{+z}^{L} + N_{-z}^{R})} \right)$$
(6)

Experimental Apparatus at MAMI

Target Polarization: Dynamic Nuclear Polarization

- Polarizing Mode: Cool target to 0.2 K, use 2.5 Tesla magnet to align electron spins, pump 70 GHz microwaves, causing spin-flips between the electrons and protons.
- Frozen Spin Mode: Cool target to 0.025 K, 'freezing' proton spins in place, remove polarizing magnet, energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization.
- Relaxation times > 1000 hours, Polarizations up to 90%.

2014 and 2015 beamtime summary

	April 2014	May 2014	June 2015	June 2015
Target Material	Carbon	FS Butanol	FS Butanol	Carbon
Radiator	Moeller	Moeller	Moeller	Moeller
Time (hours)	140	1 <mark>90</mark> + 90	<mark>140</mark> + 160	55
Electron Energy (MeV)	450	450	450	450
Beam Current (nA)	7.5	7.5	20	20
Collimator (mm)	2.5	2.5	2.5	2.5
Energy Sum (MeV)	> 40	> 40	> 90	>90
Tagger Channels used	270	270	180	180
Target Polarization	-	<mark>62%</mark> , 59%	<mark>63%</mark> , 60%	-
E_{γ} Polarization	72%	72 %	72 %	72%

• Positively polarized, Negatively polarized,

Compton Scattering: Event Selection

٩

Require ONLY one neutral and one charged track.

• Require a cut on Coplanarity Angle, $\Delta \phi = |\phi_{\gamma} - \phi_{recoil}| = 180^{\circ} \pm 15^{\circ}$

• Opening Angle, $cos(\Omega_{OA}) = \frac{\vec{p}_{miss} \cdot \vec{p}_{recoil}}{|\vec{p}_{miss}| \times |\vec{p}_{recoil}|} = 10^{\circ}$

Sharp peak centered at 180 $^{\circ}$ (MC Simulation).

Peak below 10° (MC Simulation).

π^0 Background

• Provides an excellent reaction for systematic checks and constraints. Due to the large cross-section (and clean reaction signal), π^0 production is an ideal reaction to perform systematic checks

Compton Missing Mass

$$m_{miss} = m_{p} = \sqrt{\left(E_{\gamma i} + m_{p} - E_{\gamma f}\right)^{2} - \left(\overrightarrow{P}_{\gamma i} - \overrightarrow{P}_{\gamma f}\right)^{2}} \qquad (7)$$

Figure: Results from 2014 beamtime at $\theta_{\gamma} = 125 - 140^{\circ}$.

Compton \sum_{2z} Asymmetry at E_{γ} = (285 - 305) MeV

• Curves are from DR calculation of Pasquini et al., making use of constraints on γ_0 , γ_{π} , $\alpha_{E1} + \beta_{M1}$ and $\alpha_{E1} - \beta_{M1}$ to vary by their experimental errors.

Fix $\gamma_{M1M1} = 2.9$, vary γ_{E1E1}

Figure: Error band represents the systematic error

Compton \sum_{27} Asymmetry at E_{γ} = (265 - 285) MeV

Fix $\gamma_{E1E1} = -3.7$, vary γ_{M1M1}

Fix $\gamma_{M1M1} = 2.9$, vary γ_{E1E1}

Proton Spin Polarizabilities Status and Future Work

- Extract proton spin polarizabilities using the results from the series of all three Asymmetry experiments (∑_{2x}, ∑₃ and ∑_{2z}).
- Finalize the systematic errors and prepare a draft paper.

• Graduate in summer 2017.

Supported by:

NSERC Grant: SAPPJ-2015-00023

Thank You

\sum_{2x} Martel, et al.

- MM distribution for $E_{\gamma} = 273 303$ MeV, $\theta_{\gamma'} = 100 120$ degree.
- Background contributions to MM: accidental coincidences, carbon/cryostat contributions (blue), reconstructed π_0 . background where one decay γ escapes setup in: TAPS downstream hole and CB upstream hole.
- Right: Fully-subtracted MM spectrum with simulated Compton peak and conservative MM <940 MeV cut is applied to exclude neutral pion production

 \sum_{2x} Martel, et al.

- New results. Physical Review Letters 114, 112501 (2015), arXiv:1408.1576 [nucl-ex]
- Measurement of a \sum_{2x} asymmetry on the nucleon. Curves are from DR calculation of Pasquini et al., making use of constraints on γ_0 , γ_{π} , $\alpha_{E1} + \beta_{M1}$, $\alpha_{E1} \beta_{M1}$ (allowed to vary within experimental errors).
- Checks were done with $B\chi PT$ calculation of Lensky and Pascalutsa

 \sum_{3} Collicot, et al.

Frame Preliminary Combined Spin Polarizabilities

	HDPV	ΒχΡΤ	$\boldsymbol{\Sigma}_{2x}$ and $\boldsymbol{\Sigma}_{3}^{\text{LEGS}}$	$\boldsymbol{\Sigma}_{2x}$ and $\boldsymbol{\Sigma}_{3}^{MAMI}$
$\gamma_{\rm E1E1}$	-4.3	-3.3	-3.5±1.2	-5.0±1.5
γ_{M1M1}	2.9	3.0	3.16±0.85	3.13±0.88
γ_{E1M2}	-0.0	0.2	-0.7±1.2	1.7±1.7
γ_{M1E2}	2.2	1.1	1.99±0.29	1.26±0.43
γ ₀	-0.8	-1.0	-1.03±0.18	-1.00±0.18
γ_{π}	9.4	7.2	9.3±1.6	7.8±1.8
α+β			14.0±0.4	13.8±0.4
<mark>α</mark> -β			7.4±0.9	6.6±1.7
χ^2/df			1.05	1.25

- Dispersion relation fits to \sum_{2x} along with either \sum_{3}^{MAMI} or \sum_{3}^{LEGS}
- (Note: Pion pole contribution has been subtracted)