

FACULTY OF Science, Department of Physics and Astronomy

ALPHA

Detection of 1S-2S Transition in Antihydrogen

Andrew Evans

- Antihydrogen Laser PHysics Apparatus (ALPHA)
- ~50 scientists from: Canada, Denmark, UK, US, Israel, Brazil, Sweden, and Japan
- Produce and study antihydrogen
- Made measurements of:
 - Trapping
 - Charge neutrality
 - Hyperfine transition

- Matter / Antimatter imbalance
- Optical transition in hydrogen measured to 15 digits
- CPT symmetry predicts hydrogen and antihydrogen to have the same atomic structure
- Discrepancies could indicate new physical principles

You need:

- Antiprotons from Antiproton decelerator (AD)
- Positrons from sodium22

You need:

Prepare cold plasmas

- Evaporative cooling
- Sympathetic cooling

Antihydrogen Recipe

Mixing

- Plasmas brought into contact
- Collisions form antihydrogen

Remove leftover antiprotons

Antihydrogen has the same annihilation reaction

- Longer observation window
 - More sensitive detector software
- Low number of atoms
 - "New" mixing method
 - Stacking antiproton bunches
 - More consistent plasma preparation
- Optical cavity in tricky environment
 - Power build-up problems
 - Alignment problems

- Silicon vertex detector
- Reconstructs tracks of charged particles
- Gives location and time of matter-antimatter annihilations

- A random forest algorithm is used
- The Punzi figure of merit is maximized $S/(\sqrt{B}+\frac{a}{2})$
 - S- Signal events
 - B- Background events
 - α- Significance of signal
- Variable Control over background noise

X-Y Event Cross-section (arbitrary units)

Plots of events in long observation period. Existing classification scheme insufficient to distinguish two distributions.

2016 In Comparison

- 140 events in 2014
- 7784 events in 2016

X-Y Event Cross-section (arbitrary units)

- Light provided at 972nm diode laser
- Doubled twice to produce 243nm photons

- Feedback system used to maintain cavity resonance
- Optical cavity inside trapping volume

- Brining experiment to cryogenic temperatures changes mirror alignment
- Running optical cavity degrades Hbar production

1S-2S Antihydrogen Transition

- Measure the change in trapping rates (particles that survive)
- Measure events during the laser interrogation (particles that annihilate)

- a) 1S-2S 243nm transition
- b) Two photon decay (survives)
- c) One photon decay (annihilation)
- d) Ionization (annihilation)

1S-2S Antihydrogen Transition

Disappearance Measurement

- Observation made during ramp down of magnets (1.5s)
- Three types of experiment, 33 runs total
- Interchanged types to avoid systematic error

Results

Туре	Number of Events	Background
Off Resonance	159	0.7
On Resonance	67	0.7
No Laser	142	0.7

1S-2S Antihydrogen Transition

Appearance Measurement

- Observation made during laser interrogation (600s)
- New background in MVA chosen
- Confirm CPT symmetry to 2*10^-10

Results

Туре	Number of Events	Background
Off Resonance	27	28.4
On Resonance	79	28.4
No Laser	30	28.4

- Line shape measurement of 1S-2S transition
 - 10KHz measurement
- 1S-2P (121nm) transition

- Laser cooling, needed for gravitational measurements

- Gravitational interactions (ALPHA-g)
 - Symmetry breaking through gravitational interactions (EEP)

- 2016 was a successful year
- Antihydrogen spectroscopy confirms CPT symmetry to 2*10^-10
- Developments in software, technique, and hardware push limits in achievable measurements and accuracy
- Successful demonstration of antihydrogen spectroscopy opens doors to many other studies

 M. Ahmadi et al., "Observation of the 1S–2S transition in trapped antihydrogen" Nature 541, 506– 510 (26 January 2017)

Thanks to:

- University of Calgary
- NSERC
- NRC
- CERN technical staff

