

The Hunt for the Z' Boson in ATLAS: A Statistical Perspective

Etienne Dreyer

Winter Nuclear & Particle Physics Conference Banff, AB, February 2017

Outline

1) Background

2) How do we search for a signal?

3) The look-elsewhere effect

4) Latest (public) search results

5) Summary

2

Outline

1) Background

2) How do we search for a signal?

3) The look-elsewhere effect

4) Latest (public) search results

5) Summary

100MP camera

Weight ~ Eiffel tower

~ 1 billion collisions/s

Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker **Toroid Magnets**

The Z' Boson

- The Standard Model is accurate but not complete
- Several beyond-Standard-Model theories predict exotic gauge particles including a neutral Z' boson

The Z' Boson

- The Standard Model is accurate but not complete
- Several beyond-Standard-Model theories predict exotic gauge particles including a neutral *Z' boson*

- Similar to the electroweak Z boson but heavier
- Should produce an excess number of lepton pairs with energies clustered around the Z' mass (*resonance*)

Hunting the Z' in ATLAS

Background processes also produce dilepton final states

Increasing cross section

also multi-jet and W+jets events where jets fake electrons (small)

 Simulate how many lepton pairs to expect as a function of their *invariant mass* and compare to the actual number recorded by ATLAS

Mass spectrum (ee channel)

ATLAS-CONF-2016-045

Outline

1) Background

2) How do we search for a signal?

3) The look-elsewhere effect

4) Latest (public) search results

5) Summary

maybe in 2017...

What's the *likelihood* of getting these data under the background-only vs. the signal+background hypotheses?

$$\mathcal{L}(ext{data}|H) = \prod_{i \in ext{bins}} rac{ig(N_i^ ext{exp}|Hig)^{N_i^ ext{obs}} e^{-(N_i^ ext{exp}|H)}}{ig(N_i^ ext{obs}ig)!}$$

What's the *likelihood* of getting these data under the background-only vs. the signal+background hypotheses?

$$\mathcal{L}(ext{data}|H) = \prod_{i\in ext{bins}} rac{ig(N_i^{ ext{exp}}|Hig)^{N_i^{ ext{obs}}}e^{-(N_i^{ ext{exp}}|H)}}{ig(N_i^{ ext{obs}}ig)!}
onumber \ N_i^{ ext{exp}} = ig\{egin{array}{c} B_i & , & H_B \ B_i + \mu S_i & , & H_{B+S} \end{array}
ight.$$

What's the *likelihood* of getting these data under the background-only vs. the signal+background hypotheses?

$$\mathcal{L}(ext{data}|H) = \prod_{i \in ext{bins}} rac{\left(N_i^{ ext{exp}}|H
ight)^{N_i^{ ext{obs}}} e^{-\left(N_i^{ ext{exp}}|H
ight)}}{\left(N_i^{ ext{obs}}
ight)!}$$
 is signal strength $N_i^{ ext{exp}} = egin{cases} B_i & , \ B_i + \mu S_i \ B_i + \mu S_i \ , \ H_{B+S} \end{bmatrix}$

What's the *likelihood* of getting these data under the background-only vs. the signal+background hypotheses?

$$\mathcal{L}(ext{data}|H) = \prod_{i \in ext{bins}} rac{\left(N_i^{ ext{exp}}|H
ight)^{N_i^{ ext{obs}}}e^{-(N_i^{ ext{exp}}|H)}}{\left(N_i^{ ext{obs}}
ight)!}$$
 is signal strength $N_i^{ ext{exp}} = egin{cases} B_i & , \ B_i \ B_i + \mu S_i \ , \ H_{B+S} \end{cases}$

 We find the maximum likelihood under both hypotheses by fitting the data with *templates* of the background and signal distributions

ee background template

ee signal templates (sampler)

"data" =

Deciding between hypotheses

How should we evaluate the difference in the data's likelihood under the two hypotheses?

Deciding between hypotheses

- How should we evaluate the difference in the data's likelihood under the two hypotheses?
- Neyman-Pearson Lemma:

The optimal test statistic for distinguishing between hypotheses is the "log-likelihood-ratio" (*LLR*):

$$q_0 = \lnigg[rac{\mathcal{L}(data|H_{
m B+S})}{\mathcal{L}(data|H_{
m B})}igg]^2 imes \mathrm{Signal} \ rac{\mathrm{signal}}{\mathrm{strength}}$$

best-fit

Q: What's the odds the observed \hat{q}_0 is a bkg fluctuation?

Q: What's the odds the observed $\,\hat{q}_{\,0}\,$ is a bkg fluctuation?

A: The *p*-value $p_0 = P(q_0 \ge \hat{q}_0 | H_B)$

Q: What's the odds the observed \hat{q}_0 is a bkg fluctuation?

- A: The *p*-value $p_0 = P(q_0 \ge \hat{q}_0 | H_B)$
- We can generate many bkg-only pseudo experiments (toys) and count how many fluctuate with $q_0 \geq \hat{q}_0$
- Wilks' Theorem $\Rightarrow q_0$ should asymptotically follow a χ^2 distribution with 1 degree of freedom¹ :

$$p_{0}=\int_{\hat{q_{0}}}^{\infty}P_{\chi^{2}}(q_{0})dq_{0}$$

¹ Fine print: assuming the bin contents are gaussian-distributed and the two hypotheses differ by only 1 parameter **22**

Q: What's the odds the observed $\,\hat{q}_{0}\,$ is a bkg fluctuation?

- A: The *p-value* $p_0 = P(q_0 \ge \hat{q}_0 | H_B)$
- We can generate many bkg-only pseudo experiments (*toys*) and count how many fluctuate with $q_0 \geq \hat{q}_0$
- Wilks' Theorem $\Rightarrow q_0$ should asymptotically follow a χ^2 distribution with 1 degree of freedom¹:

$$p_{0} = \int_{\hat{q_{0}}}^{\infty} P_{\chi^{2}}(q_{0}) dq_{0}$$
 i.e. 5 σ

p-value often measured in Gaussian significance, aka z_0

i fine print: assuming the bin contents are gaussian-distributed and the two hypotheses differ by only 1 parameter 23

Pseudodata with injected 3 TeV signal

24

Outline

1) Background

2) How do we search for a signal?

3) The look-elsewhere effect

4) Latest (public) search results

5) Summary

Looking around

Since we don't know the Z' mass, we test many signal "locations" and find the largest excess

HEP conventions for "evidence" & "discovery" are
 $z_0 = 3\sigma ~(p_0 = 1.4 \times 10^{-3})$ $z_0 = 5\sigma ~(p_0 = 2.9 \times 10^{-7})$

Looking around

- Since we don't know the Z' mass, we test many signal "locations" and find the largest excess
- This increases our chances of observing a fluctuation somewhere (*look-elsewhere effect*)

HEP conventions for "evidence" & "discovery" are
 $z_0 = 3\sigma ~(p_0 = 1.4 \times 10^{-3})$ $z_0 = 5\sigma ~(p_0 = 2.9 \times 10^{-7})$

Looking around

- Since we don't know the Z' mass, we test many signal "locations" and find the largest excess
- This increases our chances of observing a fluctuation somewhere (*look-elsewhere effect*)

calculate the global p-value by brute force

- The global p-value compensates by reporting the probability of observing a fluctuation at least as significant as the observed excess *anywhere* in the mass scan
- We can again generate many bkg toys and

Largest local z-values found in 50,000 toys

Largest local z-values found in 50,000 toys

Global vs. Local Significance

Outline

1) Background

2) How do we search for a signal?

3) The look-elsewhere effect

4) Latest (public) search results

5) Summary

ee channel p-value scan

μμ channel p-value scan

Summary

- We're looking for a localized excess of dilepton final states in ATLAS caused by a hypothetical Z'boson
- The *log-likelihood ratio* q_0 is the optimal test statistic for discriminating between H_B and H_{B+S}
- The global p-value of an observed excess is the probability that the bkg would produce a fluctuation at least as significant anywhere in the mass range

▶ No signal observed in ICHEP 2016 results (13.3 fb⁻¹)

Questions?

Neutrino masses?

U up quark	C charm quark	top quark	g gkon
1968: SLAC	1947: Manchester University	1977: Fermilab	1923: Washington University*
d	S	b	Y
down quark	strange quark	bottom quark	photon
1956: Savannah River Plant	1962: Brookhaven	2000: Fermilab	1983: CERN
\mathcal{V}_{e}	V_{μ}	\mathcal{V}_{τ}	W
electron neutrino	muon neutrino	tau neutrino	W boson
1897: Cavendish Laboratory	1937 : Caltech and Harvard	1976: SLAC	1983: CERN
е	μ	τ	Ζ

Z' Models

- Sequential Standard Model (SSM)
 - Accessible as a benchmark but not very attractive theoretically
 - Fermion couplings identical to that of Standard Model Z
- E6 Grand Unified Theory
 - Physical Z' states are a mixture of two residual U(1) after E6 breaking
- Randall-Sundrum Graviton
 - Z' is an excitation of the spin-2 graviton propagating in bulk 5D space
- Little Higgs

Mass spectrum (µµ channel)

Brute-force global p_0 calculation

Global p-value from "upcrossings"

Scanning toys takes a *long* time!

 Gross & Vitells derive an analytic description of the look-elsewhere effect which asymptotically approaches the slow "brute-force" method

Gross, Eilam, and Ofer Vitells. "Trial factors for the look elsewhere effect in high energy physics." *The European Physical Journal C - Particles and Fields* 70.1 (2010): 525-530.

Idea: the bkg's tendency to fluctuate is related to the average number of *upcrossings* where q_0 crosses above some threshold c_0 in pseudo-experiments

" are upcrossings above $c_0=1$

Global p-value from "upcrossings"

Scanning toys takes a *long* time!

 Gross & Vitells derive an analytic description of the look-elsewhere effect which asymptotically approaches the slow "brute-force" method

Gross, Eilam, and Ofer Vitells. "Trial factors for the look elsewhere effect in high energy physics." *The European Physical Journal C - Particles and Fields* 70.1 (2010): 525-530.

Idea: the bkg's tendency to fluctuate is related to the average number of *upcrossings* where q_0 crosses above some threshold c_0 in pseudo-experiments

$$p_{ ext{global}} \leq P(\chi^2 > \hat{q}_0) + \langle N(c_0)
angle e^{-(\hat{q}_0 - c_0)/2}$$

local p-value

avg # of upcrossings/toy

scaling law for threshold c₀

Largest local z-values (ee)

Largest local z-values (µµ)

48

Largest local z-values (comb)

ee background templates

μμ background templates

Signal templates (µµ)

comb channel p-value scan

Validation without systematics

Exclusion limits (ee)

Exclusion limits (µµ)

Exclusion limits (comb)

