PROPOSED CMOS-BASED SENSORS FOR THE ATLAS DETECTOR: CHESS-2

Robin Newhouse University of British Columbia

ATLAS DETECTOR

- Detects particles produced by proton-proton collisions in the Large Hadron Collider
- Studies: origin of mass, nature of dark matter, new physics, quarkgluon plasmas

44m

INNER DETECTOR STRUCTURE

b_a Inner detector measures charged particle trajectory Inner tracker radius: ~1 m D Pixels Semiconductor Tracker Transition Radiation Tracker

Ó

MOTIVATION TO REPLACE INNER DETECTOR

Must handle significantly increased luminosity

Issues

- Bandwidth saturation
- Detector occupancy
- Radiation damage

Requires a complete replacement

Pileup in the inner detector

ATLAS Upgrade for the HL-LHC: Meeting the challenges of a five-fold increase in collision rate - Vankov, Peter EPJ Web Conf. 28 (2012) 12069 arXiv:1201.5469 [physics.ins-det] ATL-UPGRADE-PROC-2012-003

BASELINE TECHNOLOGY

b Plan to replace the inner detector with a new **all-silicon detector**

Two detectors

- Dixel detector: 39-271 mm radius
- Silicon strip detector: 405-1000 mm radius

Silicon strips: over 200 m² silicon!

Assembled silicon strip sensor

ATLAS Itk TDR

ALTERNATIVE: HIGH-VOLTAGE CMOS DETECTORS

a Alternative proposed sensor technology

Description Potential advantages over strip sensors

- Reduced material budget
- a Assembly time/complexity
- Commercial fabrication
- Reduced cost
- Spatial resolution

Public Upgrade Inner Tracker ITk Plots http://dx.doi.org/10.1016/j.nima.2016.03/099

CMOS: FUNDAMENTAL DIFFERENCES

- "Monolithic" chip: Readout electronics are integrated with the sensor
- Information exchange to readout chips uses fast digital bus
 - Far fewer wire bonds than traditional one bond per channel
- Inherently pixel-like sensor
 - Row+column readout gives longitudinal information
 - Could reduce silicon area by ~1/2

STATUS

CHESS-1

- Dixel response
- Can the pixels handle radiation?
 - □ Answer: so far, **yes**
- Fadayev et al. characterize
 HVCMOS after irradiation by
 neutrons and protons
 - http://dx.doi.org/10.1016/j.nima.
 2016.05.092
- Mandić et al. with neutrons
 - https://arxiv.org/abs/1701.05033

- CHESS-2
 - System Response
 - Can we build a full prototype?
 - Match the planned readout protocol and physical architecture
 - In progress

OUR CURRENT WORK READOUT HARDWARE AND SOFTWARE

Full test system will include:

- CHESS-2 digital daughterboard designed at SLAC.
- □ CHESS-2 to **FMC adaptor board** designed at UBC.
 - Supplies power, bias voltage, FMC communication to FPGA
- Data acquisition (DAQ) board: Digilent's Nexys Video FPGA
- Firmware: ITSDAQ (ITk Strips Data acquisition)
- Software: SCTDAQ (SemiConductor Tracker Data acquisition)

FMC FPGA Mezzanine Card

Digital Daughterboard

Adaptor board

Nexys Video FPGA

MY ROLE READOUT SOFTWARE AND FIRMWARE

- Develop robust communication package for configuration and data readout
- Developing firmware to communicate with the ASIC control
- Use existing SACI communication protocol to define packet contents

NEXT STEPS

Completion and testing of readout software

 Integration into the current mechanical and electrical system (a full module)

Examination of signal response with charge injection on CHESS sensor (simulating signals)
 Single chip ASIC to replace FPGA prototype

SUMMARY

- ATLAS inner tracker will be replaced to cope with highradiation environment of High-Luminosity LHC program
- High Voltage CMOS sensors are proposed as an alternative to the baseline silicon strip sensors
- CHESS-2 program will construct a fully integrated prototype for testing and proof-of-concept
- Readout software and firmware being constructed as to be compatible with planned ITk readout infrastructure

QUESTIONS?

14

BACKUP SLIDES

CHESS-2 CROSS SECTION

CHESS-2: "CMOS HV/HR Evaluation for Strip Sensors"

- Electron-hole pairs (caused by ionizing particles) separated and quickly collected by drift
- A lightly doped deep n-well (DNW) in p-type substrate is used as charge collecting electrode
- The p-n junction is partially depleted by applying a reversed bias voltage

http://iopscience.iop.org/article/10.1088/1748-0221/10/03/C03033

AMS 0.35µm HV Sensor and read-out on the same substrate.

SACI COMMAND STRUCTURE (SLAC ASIC CONTROL INTERFACE)

- SACI configures readout electronics
 - Pixel matrix configuration
 Initialize 40MHz Clock
- Instructions come as custom serialized ethernet packets

NEXT STEPS FOR ATLAS

OUR CURRENT WORK READOUT HARDWARE AND SOFTWARE

Full test system will include:

- CHESS-2 digital daughterboard designed at SLAC.
- CHESS-2 to FMC adaptor board designed at UBC.
 - Supplies power, bias voltage, FMC communication to FPGA
- Data acquisition (DAQ) board: Digilent's Nexys Video FPGA
- Firmware: ITSDAQ (ITk Strips Data acquisition)
- Software: SCTDAQ (SemiConductor Tracker Data acquisition)

Schematic and example signals For SACI configuration commands

19

CHESS-2 CROSS SECTION

CHESS-2: "CMOS HV/HR Evaluation for Strip Sensors"

- Sensor is based on a triple-well structure
- A lightly doped deep n-well (DNW) in p-type substrate is used as charge collecting electrode
- The p-n junction is partially depleted by applying a reversed bias voltage

 Electron-hole pairs (caused by ionizing particles) separated and quickly collected by drift

AMS 0.35µm HV Sensor and read-out on the same substrate.

MY ROLE READOUT SOFTWARE AND FIRMWARE

Develop robust communication package

- Configuration and data readout
- Developing firmware to communicate with the ASIC control via the existing ITk data acquisition
- Work in tandem with firmware developers to define packet contents

Use existing SACI communication protocol

MY ROLE READOUT SOFTWARE AND FIRMWARE

Develop robust communication package

- Configuration and data readout
- Developing firmware to communicate with the ASIC control via the existing ITk data acquisition
- Work in tandem with firmware developers to define packet contents

Use existing SACI communication protocol

