Quartic Gauge Boson Coupling Results from the LHC

Christopher Anelli

University of Victoria

Winter Nuclear and Particle Physics Conference, Banff 2017

Large Hadron Collider

Measurements made using proton-proton collisions at the Large Hadron Collider. The LHC's two general discovery detectors are the **ATLAS** and **CMS** experiments.

Quartic Gauge Coupling (QGC) studies utilize the 2012 $\sqrt{s} = 8 \text{ TeV}$ (20.3 fb⁻¹ ATLAS 19.4 fb⁻¹ CMS) data still place the most stringent limits on new physics.

Quartic Gauge Couplings

The Standard Model (SM) predicts the self interactions of the vector gauge bosons, γ , W^{\pm} , Z, and requires the presence of Quartic Gauge Couplings.

Deviation from the SM prediction is a clear sign of **new physics**.

Effective Field Theories

Anomalous QGCs are modeled with **Effective Field Theories** (EFT). **EFT** approximate new physics through higher mass dimension operators divided by powers of an energy scale, Λ :

For **aQGC**, **dimension-8** is the lowest order of "purely" quartic gauge interactions. 18 possible operators exist. AQGCs manifest as an excess of events at high Q².

$$\mathcal{L}_{aQGC} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^4} \mathcal{O}_i + \dots$$

Example: The Fermi Theory of weak interactions is an **EFT** useful at energies, $q \ll m_W(\Lambda)$.

Final States

QGC studies measure triboson production or diboson production through vector boson scattering (VBS), looking for leptonic decays of the W,Z and in the case of VBS the presence of two separated jets.

Additional non-**OGC** Feynman diagrams also contribute to these final states. There are contributions from Initial State Radiation (ISR), Final State Radiation (FSR), and Triple Gauge Couplings (TGC).

Christopher Anelli

[†]Illustrative subset of the possible non-QGC diagrams, all must be considered.

ISR

Production Cross Sections

Triboson production and VBS are **rare** SM processes just becoming accessible at the LHC.

Status: August 2016

Wγγ

Ζγγ

ATLAS sets limits using an aQGC region with $m_{rr} > 200$ GeV, for vv channel $m_{rr} > 300$ GeV

$W\gamma + 2$ jets (VBS)

Comparison to Theory

The electron and muon channels are combined into a single cross-section measurements. Experimental results are in agreement with the NLO theory predictions.

Taken from ATLAS public results, twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Taken from CMS-PAS -SMP-14-018, CMS-PAS-SMP-14-011, JHEP arXiv1604.04464

Summary of Limits

EFT are often constrained by multiple channels, useful for differentiating potential signal. Summaries taken from: <u>twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC</u>

A	pril 2016	CMS			c	
		ATLAS	Chann	nel Limits	J <i>L</i> dt	√s
	$f_{T,0}/\Lambda^4$	······	Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
		HH	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
		······	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
		I	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
		H	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
		⊢−−− I	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
		F1	ss WV	V [-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	$f_{T,1}/\Lambda^4$	HI	Wγγ	[-4.6e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
		⊢	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
		н	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
		F-I	ss WV	V [-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	$f_{T,2} / \Lambda^4$	⊢−−−	Zγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
		⊢ — — I	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
		FI	ss WV	V [-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	$f_{T,5} / \Lambda^4$	⊢−−−−	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
		H	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
	$f_{T,6} / \Lambda^4$	н	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
	$f_{T,7} / \Lambda^4$	⊢—-+	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
	$f_{T,8} / \Lambda^4$	Н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
	$f_{T,9}/\Lambda^4$	⊢ −−1	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
		, F	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb⁻¹	8 TeV
		50 0 5		100	150	
		-50 0 5	0			Γ Τ - \ /-41
			2 6	augue Limits @95	% U.L.	
Christopher Anel	11		13 †	Couplings are defined for	ollowing t	he Eboli et. al conver

Transverse Parameters

Summary of Limits

From: twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Longitudinal and Mixed-Transverse Parameters

	CMS				ſ	
			Channel	Limits	∫ <i>L</i> dt	√s
f _{M,0} /Λ ⁴	<u>+</u>		WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
	F-4		Ζγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
	H		Wγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV
	F-I		ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV
	1		γγ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV
$f_{M,1}/\Lambda^4$	+I		WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
	⊢−−−−		Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV
	⊢ −1		Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
	E-L		ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	Н		γγ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV
$f_{M,2}/\Lambda^4$			Ζγγ	[-5.1e+02, 5.1e+02]	20.3 fb ⁻¹	8 TeV
	h		Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV
	н		Ζγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
	н		Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,3}/\Lambda^4$			Ζγγ	[-9.2e+02, 8.5e+02]	20.3 fb ⁻¹	8 TeV
	+t		Wγγ	[-4.7e+02, 4.4e+02]	20.3 fb ⁻¹	8 TeV
	н		Zγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
	н		Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,4}/\Lambda^4$	Н		Wγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,5}/\Lambda^4$	H		Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,6}/\Lambda^4$	<u>⊢−1</u>		Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
,.	F-1		ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV
$f_{M,7}/\Lambda^4$	⊢ — ⊣		Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV
	⊢ –↓		ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV
-1000	0	100	0	2000	3000	
			aQQ	GC Limits @95	% C.L.	[TeV ⁻⁴]

Christopher Anelli

14

[†]Couplings are defined following the Eboli et. al convention,

Looking Forward

New data: Last summer ATLAS used partial 2016 dataset (13.3 fb⁻¹⁾ to measured WZ production at $\sqrt{s} = 13$ TeV. Limits placed on aTGC (Dim-6 EFT).

Comparison of 8 TeV and 13 TeV Limits

8 TeV	EFT coupling	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
	c_W/Λ^2	[-3.7; 7.6]	[-4.3; 6.8]
	c_B/Λ^2	[-270 ; 180]	[-320 ; 210]
	c_{WWW}/Λ^2	[-3.9 ; 3.8]	[-3.9; 4.0]
-			
13 TeV	Coupling	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$
	$c_W/\Lambda_{ m NP}^2$	[-4.1; 7.6]	[-3.8; 8.6]
	$c_B/\Lambda_{\rm NP}^2$	[-261; 193]	[-280; 163]
-	$c_{WWW}/\Lambda_{\rm NP}^2$	[-3.6; 3.4]	[-3.9; 3.7]

Limits are as good as or surpass previous 8 TeV results. With 36 fb⁻¹ of integrated luminosity in the <u>full</u> 2016 dataset, new QGC studies should surpass current bounds and potentially discover new physics.

- Triboson production and VBS are accessible at the LHC.
- Fiducial cross-section measurements agree with SM predictions.
- Dim-8 EFT used to search for aQGC in the electroweak sector, $\sqrt{s} = 8$ TeV results are currently the most constraining.
- Excitement for new results and increased sensitivity with the 2016 data!

Backup Slides

Likelihood

For likelihood, observed number of events follows a Poisson distribution. Product over channels and detector regions.

Dim-8 EFT

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	Х	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9} \;, \! \mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \qquad \mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \qquad \mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] \\ \mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \qquad \mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \qquad \mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right] \\ \mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \qquad \mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right] \\ \mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \qquad \mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta} \\ \mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu}\Phi \right] \times B^{\beta\nu} \qquad \mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu} \\ \mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu}\Phi \right] \qquad \mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} \\ \mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu}\Phi \right] \qquad \mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} \end{aligned}$$