

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Towards N=82 r-process waiting point: precision atomic mass measurement of ¹²⁵⁻¹²⁷Cd

Erich Leistenschneider for TITAN Collaboration

WNPPC, February 2017

r-Process (rapid neutron capture)

Neutron capture (n,γ) competes with photodesintegration (γ,n) and β -decay

Hot temperatures ($\sim 10^{9}$ K)

High neutron densities (> 10^{20} n/cm³)

Neutron separation energies required \rightarrow nuclear masses (~10keV/c² precision)

Explosive Nucleosynthesis

r-Process (rapid neutron capture)

Explosive Nucleosynthesis

r-Process (rapid neutron capture)

Waiting point ¹³⁰Cd and surroundings

"Wish-list":

Evolution of one and two neutron separation energies around ¹³⁰Cd Improve masses to < 10 keV/ c^2 for accurate r-process calculations Resolve long lived isomeric states

Waiting point ¹³⁰Cd and surroundings

"Wish-list":

Evolution of one and two neutron separation energies around ¹³⁰Cd Improve masses to < 10 keV/c² for accurate r-process calculations Resolve long lived isomeric states

Cd Beams

ISAC I at TRIUMF

TITAN Facility

TRIUMF Ion Traps for Atomic and Nuclear Science

Measurement Principle

Time-of-Flight Ion Cyclotron Resonance

Cyclotron frequency:

$$\nu_c = \frac{q B}{2\pi m}$$

Excitation:

External driving field applied with frequency ν_{rf}

A lot of energy will be given to the ion`s motion, but only if $\nu_{rf} = \nu_c$

Gain in energy translates into a faster time-of-flight to detector

¹²⁵Cd

¹²⁶Cd

* analysis still in progress!

¹²⁷Cd

* analysis still in progress!

¹²⁷Cd

Cd 2-neutron separation energies

Cd 2-neutron separation energies

PRELIMINARY

Structure Evolution

PRELIMINARY

Most spins & parities assigned based on systematic arguments

Structure Evolution

PRELIMINARY

Most spins & parities assigned based on systematic arguments Shell model calculations point out non-trivial systematics, assignments are not reliable

How can we go further?

Attempt to measure mass of ¹²⁹Cd failed.

Multi-reflection Time-of-Flight (MR-TOF) Isobar separator is required!

Offline comissioned, ready for online installation (in a few weeks)

~100k resolving power after 2.0 ms

No clear resonance found, too large isobaric contamination

How can we go further?

Multi-reflection Time-of-Flight (MR-TOF) Isobar separator

Successfully verified previous mass measurements of ¹²⁵Cd^{gs,m} and ¹²⁶Cd

Measured masses of both ¹²⁷Cd^{gs,m}

Found isomer misidentification in previous measurements

Ongoing theoretical calculations to inspect impact on nuclear structure and on r-process abundances

New data should be included in the next AME

Too large isobaric contamination to probe masses beyond A=128

Future measurements will require combined IG-LIS + MR-TOF

TITAN Collaboration

university of groningen

kvi - center for advanced radiation technology

MAX-PLANCK-INSTITUT V FÜR KERNPHYSIK

HEIDELBERG

Westfälische

WILHELMS-UNIVERSITÄT Münster

UNIVERSITY OF

CALGARY

Production of Cd Beams

Ion-Guide Laser Ion Source (IG-LIS)

S. Raeder et al. (2014)

Production of Cd Beams

S. Raeder et al. (2014)

Charge breeds ions through electron impact ionization

Measurement Principle

Time-of-Flight Ion Cyclotron Resonance

Confinement in a Penning Trap:

Cyclotron frequency:

 $\nu_c = \frac{q B}{2\pi m}$

Excitation:

External quadrupole RF field applied with frequency ν_{rf}

A lot of energy will be given to the ion`s motion, but only if $\nu_{rf} = \nu_c$

Measurement Principle

Time-of-Flight Ion Cyclotron Resonance

Cd neutron separation energies

Cd neutron separation energies

Structure Evolution

RTRIUMF

Explosive Nucleosynthesis

r-Process (rapid neutron capture)

