

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Ion traps at rare-isotope-beam facilities

Ania A. Kwiatkowski Research Scientist, TRIUMF Adjunct Asst. Professor, Univ. Victoria

Winter Nuclear and Particle Physics Conference 17 February 2017

How can we make high-precision measurements?

My wish list for an ideal laboratory

- easy & exact manipulation
- well-defined volume
- universal
- infinite observation time

My wish list for an ideal laboratory

- easy & exact manipulation
- well-defined volume
- universal
- infinite observation time

relies on

electromagnetic forces + good vacuum

My wish list for an ideal laboratory

- easy & exact manipulation
- well-defined volume
- universal
- infinite observation time

Want
$$\vec{F} = -q \nabla \varphi \propto -\vec{r}$$

& satisfy
$$\Delta \varphi = 0$$

 \Rightarrow find $\varphi \propto \frac{\varphi_0^2}{d^2}(\rho^2 - z^2)$

relies on

Four principal ion storage devices at RIB facilities.

Moving ions	"Stationary" ions						

Four principal ion storage devices at RIB facilities.

Moving ions		"Stationary" ions							
Storage Rings	Multi-reflection/ electrostatic traps								
Electromagnetic forces restrict ions to a ring. FROM SIS ESR GAS JET ELECTRON COOLER EAST KICKER CAVITY EAST KICKER CAVITY ELECTRON COOLER EAST KICKER	Electrostatic mirrors trap ions.								

Four principal ion storage devices at RIB facilities.

Storage RingsMulti-reflection/ electrostatic trapsPaul trapPenning trapElectromagnetic forces restrict ions to a ring.Electrostatic mirrors trap ions.Oscillating (RF) electric field between ring & end capsSuperposition of magnetic field (z) & electrostatic quadrupolar field	Moving ions		"Stationary" ions								
Electromagnetic forces restrict ions to a ring. Electrostatic mirrors trap ions. Oscillating (RF) electric field between ring & electrostatic end caps Superposition of magnetic field (z) & electrostatic quadrupolar field	Storage Rings	Multi-reflection/ electrostatic traps	Paul trap	Penning trap							
CANTE RE-CANTY ESR GAS JET ELECTRON COOLER EAST KICKER RF-CANTY ELECTRON COOLER RF-CANTY O 5, 10 m CONSTRUCTION CONSTRUCTI	Electromagnetic forces restrict ions to a ring.	Electrostatic mirrors trap ions.	Oscillating (RF) electric field between ring & end caps	Superposition of magnetic field (z) & electrostatic quadrupolar field							

Ion traps are proliferating for a variety of purposes.

Ion traps are proliferating for a variety of purposes.

H.-J. Kluge Adaptation for **RIB** facilities

TRIUMF's Ion Trap for Atomic and Nuclear science uses 5 traps to prepare & measure RIB.

The buffer-gas-filled linear Paul trap accumulates, cools, & bunches the RIB.

 RadioFrequency Quadrupole → transverse confinement

$$+V_{RF}\cos(\omega_{RF}t)$$
$$-V_{RF}\cos(\omega_{RF}t)$$

 Segmentation → axial trapping

• Buffer gas \rightarrow cooling

P.H. Dawson, Quadrupole Mass Spectrometry and its Applications, Elsevier Science, 1976

The buffer-gas-filled linear Paul trap accumulates, cools, & bunches the RIB.

 RadioFrequency Quadrupole → transverse confinement

- Segmentation → axial trapping
- Buffer gas \rightarrow cooling

A Penning trap accesses the cyclotron frequency & therefore the ion's mass.

RIB mass measurements with precisions up to ~10⁻⁹ and for half-lives as low as 9 ms (¹¹Li⁺ @ TITAN)

Measurement PEnning Trap accesses the cyclotron frequency & therefore the ion's mass.

```
2\pi v_{\rm c} = (qe/m) \cdot B
```

$$v_{\rm c} = v_+ + v_-$$

RIB mass measurements with precisions up to ~10⁻⁹ and for half-lives as low as 9 ms (¹¹Li⁺ @ TITAN)

M. Brodeur *et al.*, PRC **80** (2009) 024314; M. Brodeur *et al.*, IJMS **20** (2012) 310

Cyclotron frequency can be determined via Timeof-Flight Ion-Cyclotron-Resonance technique.

MCP

M. Konig, et al., Int. J. Mass Spec. 142 (1995) 93

Cyclotron frequency can be determined via Timeof-Flight Ion-Cyclotron-Resonance technique.

M. Konig, et al., Int. J. Mass Spec. 142 (1995) 93

What is special about ³⁴Al and its neighbours?

A brief aside in atomic physics: electrons occupy shells.

[Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
[Period																			
	1	1 H																		2 He
	2	з Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
	3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
				*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*Lant	hanoi	ds		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb		
	**Actinoids			**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

A brief aside in atomic physics: electrons occupy shells.

www.webofelement.com; A. Bohr & B. Mottleson

Neutrons & protons also occupy shells, which occur at "magic numbers." Quantum ener

Further splitting from spin-orbit Quantum energy effect states of potential well including lg_% angular momentum effects. 1g 50 2p 2p_{3/2} 28 1f722 20 10_{3/0} 2s 1d 2s 1d_{5/2} 1 n

Nuclear shells may evolve as the ratio of Z/N grows more unstable,

causing shells to disappear or new ones to emerge.

The TITAN campaign at N = 20 has measured masses of ²⁹⁻³²Na, ³⁰⁻³⁴Mg, ²⁹⁻³⁵AI (T_{1/2} ≥ 12.9 ms for ³²Na),

Improving precisions (often 10x) and finding deviations for Na & Mg from prior measurements.

A. Chaudhuri et al, PRC 88 (2013) 054317; AAK et al, PRC 92 (2015) 061301; A.T. Gallant, et al, in preparation

TITAN's values indicate the disappearance of the N = 20 shell and large gains in correlation energy.

A. Chaudhuri et al, PRC 88 (2013) 054317; AAK et al, PRC 92 (2015) 061301; A.T. Gallant, et al, in preparation

Precisions $\delta m/m$ of 10⁻⁷ are routine; can we do better?

Testing the unitarity of the quark-mixing (CKM) matrix needs high-precision measurements.

Figures adapted from https://inspirehep.net/record/1083304/plots; I. Towner & J.C. Hardy, PRC (2010) S. Ettenauer, et al, PRL 107, 272501; A.A. Kwiatkowski, *et al*, AdP (2013); M.P. Reiter, under analysis

How can we purify the beam to the level required for high-precision experiments?

Separation increases with flight path \rightarrow longer path length

MR-TOF demonstrated to be a fast, broadband isobar separator off-line

- Resolving power depends on number of passes or multi-turns
- R ~10⁵ achieved in a few ms for A = 40

C. Jesch, Hyper. Int. 235 (2015) 97; D.A. Short for M.Sc. thesis, SFU

MR-TOF will be used for fast mass measurements.

C. Jesch, Hyper. Int. 235 (2015) 97; D.A. Short for M.Sc. thesis, SFU

What else can be done to boost measurement precision?

Testing the unitarity of the quark-mixing (CKM) matrix needs high-precision mass determinations.

I. Towner & J.C. Hardy, PRC (2010); S. Ettenauer, et al, PRL 107, 272501

Higher charge states can improve precision or reduce beam time requirements.

$$\frac{\delta m}{m} \propto \frac{m}{q e B T_{RF} \sqrt{N}}$$

N = statistics \rightarrow limited by yield

 T_{RF} = measurement time \rightarrow limited by half life

B = magnetic field \rightarrow limited by technology

q = charge state \rightarrow limited by Z

M.C. Simon, et al, RSI 83 (2012) 02A912

Ions are charge bred in the Electron Beam Ion Trap, a Penning trap with an electron beam.

Maximum charge state depends on *Z*, electron beam energy, electron beam current, & charge breeding time

A. Lapierre et al., NIMA 624 (2010) 54

Ions are charge bred in the Electron Beam Ion Trap, a Penning trap with an electron beam.

Maximum charge state depends on *Z*, electron beam energy, electron beam current, & charge breeding time

A. Lapierre et al., NIMA 624 (2010) 54; M.C. Simon, et al, RSI 83 (2012) 02A912

TITAN's EBIT provides optical access, allowing for in-trap decay spectroscopy.

Small Port

Objective: benchmark $2\beta 2\nu$ nuclear matrix elements

Advantages: no backing material β's directed away from γ detectors trapper techniques/manipulation high purity HCI compatible

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502; K.G. Leach et al., NIMA, 780 (2015) 91

TITAN's EBIT provides optical access, allowing for in-trap decay spectroscopy.

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502; K.G. Leach et al., NIMA, 780 (2015) 91

Highly Charged Ions have intrinsic scientific value.

The charge state impacts the decay and consequently nucleosynthesis.

pp-chains describe how to form an α from protons

Ion traps at TITAN are used for

beam preparation

- cooling
- bunching
- charge breeding
- purifying
- in-trap decay and recapture

& precision measurements.

- Penning trap mass spectrometry $\rightarrow N = 20$ shell, testing CKM matrix, nuclear astrophysics
- in-trap decay spectroscopy $\rightarrow 2\nu 2\beta$ problem
- studies of highly charged ions \rightarrow radioactive decay, stellar evolution

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

0 Y

f