Single Particle Structure of Exotic Sr Isotopes

Friday $15^{\text {th }}$ July 2016

Steffen Cruz
UBC and TRIUMF

Canada's national laboratory for particle and nuclear physics and accelerator-based science

- Single Particle Configurations

Shape Coexistence
95Sr(d, p) Experiment

- Interpretation of Results

Shape deformation enables the nucleus to minimize its energy.

HFB calculation (left) shows expected quadrupole deformation across nuclear chart.

Quadrupole deformation is a measure of nuclear shape.

Quadrupole Deformation in Nuclei

Shape deformation enables the nucleus to minimize its energy.

Nilsson model: Different deformations have different single particle configurations
HFB calculation (left) shows expected quadrupole deformation across nuclear chart.

Quadrupole deformation is a measure of nuclear shape.

Plot source: R.F. Casten

- State of the art (beyond mean field) calculations predict binding energy as a function of deformation.
- Measurements of single particle levels in ${ }^{95,96,97} \mathrm{Sr}$ essential for a detailed description of this transitional region.

- State of the art (beyond mean field) calculations predict binding energy as a function of deformation.
- Measurements of single particle levels in ${ }^{95,96,97} \mathrm{Sr}$ essential for a detailed description of this transitional region.

- State of the art (beyond mean field) calculations predict binding energy as a function of deformation.
- Measurements of single particle levels in ${ }^{95,96,97}$ Sr essential for a detailed description of this transitional region.

Shape Coexistence at Z~40 N~60

The strong $\mathrm{O}_{3}{ }^{+}(1465 \mathrm{keV}) \rightarrow \mathrm{O}_{2}{ }^{+}$(1229 keV) EO transition is characteristic of coexisting shapes.

Shape coexistence in atomic nuclei [Rev. Mod. Phys. 83, 1467 (2011)]

Shape Coexistence at Z~40 N~60

The strong $\mathrm{O}_{3}{ }^{+}(1465 \mathrm{keV}) \rightarrow \mathrm{O}_{2}{ }^{+}$(1229 keV) EO transition is characteristic of coexisting shapes.

Shape coexistence in atomic nuclei [Rev. Mod. Phys. 83, 1467 (2011)]

Shape Coexistence at Z~40 N~60

The strong $\mathrm{O}_{3}{ }^{+}(1465 \mathrm{keV}) \rightarrow \mathrm{O}_{2}{ }^{+}$(1229 keV) E0 transition is characteristic of coexisting shapes.

Shape Coexistence at Z~40 N~60

- The strong $\mathrm{O}_{3}{ }^{+}(1465 \mathrm{keV}) \rightarrow \mathrm{O}_{2}{ }^{+}$(1229 keV) EO transition is characteristic of coexisting shapes.
- The deformed $\mathrm{O}_{3}{ }^{+}$state at 1465 keV is expected to be the same structure as the ${ }^{98} \mathrm{Sr}$ ground state.

G. Lhersonneau et al., Phys. Rev. C 49, (1994) 1379

Shape coexistence in atomic nuclei [Rev. Mod. Phys. 83, 1467 (2011)]

Experimental Campaign
${ }^{94,95,96} \mathrm{Sr}(\mathrm{d}, \mathrm{p})$ reactions to study evolution of structure in Sr through low energy single particle states.

Experimental Campaign

${ }^{94,95,96} \mathrm{Sr}(\mathrm{d}, \mathrm{p})$ reactions to study evolution of structure in Sr through low energy single particle states.

Neutron populates one of the empty single particle orbitals

Experimental Campaign

${ }^{94,95,96} \mathrm{Sr}(\mathrm{d}, \mathrm{p})$ reactions to study evolution of structure in Sr through low energy single particle states.

Aims

- Measure angular momentum of Sr states.
- Measure cross section, which gives orbital occupation number.
- Compare occupation numbers to large scale shell model calculations that will be carried out in collaboration with shell model experts.

Neutron populates one of the empty single particle orbitals

"Sr Beam Delivery at TRIUMF

- A 500 MeV proton beam was impinged on a UCX target.
- Extracted isotopes were laser ionized, mass separated and transported to the CSB where the isotopes were charge bred to 16^{+}.
- Beam re-accelerated to $5.5 \mathrm{MeV} / \mathrm{u}$ and impinged on $0.5 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target ($\sim 10^{6}$ p.p.s) .

- A 500 MeV proton beam was impinged on a UCx target.
- Extracted isotopes were laser ionized, mass separated and transported to the CSB where the isotopes were charge bred to 16^{+}.

Beam re-accelerated to $5.5 \mathrm{MeV} / \mathrm{u}$ and impinged on $0.5 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target ($\sim 10^{6}$ p.p.s) .

Composition of radioactive beam was $\sim 98 \%{ }^{95} \mathrm{Sr}$.

Sr experiments were first high mass $(A>30)$ experiment using secondary-accelerated beams at TRIUMF.

Detector Systems

SHARC

- Silicon detector array.
- Efficiency $\approx 80 \%$.
- Coverage $\approx 80 \%$ of 4π.
- Ang. res. $\approx 1^{\circ}$.

TIGRESS

- 12 HPGe Clovers.
- Efficiency (1 MeV) $\approx 10 \%$.
- Coverage $\approx 2 \pi$.
- \quad Energy res. $(1 \mathrm{MeV}) \approx 2 \mathrm{keV}$.

TIGRESS and SHARC detectors were used to enable p-४ coincidence measurements.

SHARC Data

- Energy resolution of SHARC makes extracting ${ }^{96}$ Sr states difficult.

Large amount of β decay background.
Kinematics For ${ }^{95} \mathrm{Sr}$

Particle identification used through dE-E detector arrangement

- Energy resolution of SHARC makes extracting ${ }^{96}$ Sr states difficult.
- Large amount of β decay background.

Kinematics For ${ }^{95} \mathrm{Sr}$

Particle identification used through dE-E detector arrangement

SHARC + TIGRESS Data

- Many ${ }^{96}$ Sr transitions observed, indicating that many levels are populated. - We only want directly populated states.
${ }^{96}$ Sr γ-Ray Spectrum

SHARC + TIGRESS Data

${ }^{96}$ Sr γ-Ray Spectrum
Many ${ }^{96} \mathrm{Sr}$ transitions observed, indicating that many levels are populated.

- We only want directly populated states.

Many ${ }^{96} \mathrm{Sr}$ transitions observed, indicating that many levels are populated.

- We only want directly populated states.
${ }^{96} \mathrm{Sr}$ Excited State Energy versus γ-Ray Energy

- Transferred neutron populates either $2 \mathrm{~s}^{1} / 2,1 \mathrm{~d} 3 / 2$ or $0 g^{7} / 2$ orbital.
- Three different orbital angular momentum transfers; $\ell=0,2$ or 4 .
- Each scenario has a characteristic angular distribution.
- Fit data to DWBA calculations to determine ℓ and s.

Angular Distribution Analysis

${ }^{95} \mathrm{Sr}(\mathrm{d}, \mathrm{p}):{ }^{96} \mathrm{Sr} \mathrm{E}_{\mathrm{exc}}=0 \mathrm{keV}$

Angular Distribution Analysis

- Transferred neutron populates either $2 s^{1 / 2}, 1 d^{3} / 2$ or $0 g 7 / 2$ orbital.
- Three different orbital angular momentum transfers; $\ell=0,2$ or 4 .

Each scenario has a characteristic angular distribution.

- Fit data to DWBA calculations to determine ℓ and S.
${ }^{95} \mathrm{Sr}(\mathrm{d}, \mathrm{p}):{ }^{96} \mathrm{Sr} \mathrm{E}_{\mathrm{exc}}=1628 \mathrm{keV}$

Angular Distribution Analysis

- Transferred neutron populates either $2 \mathrm{~s}^{1} / 2,1 \mathrm{~d}^{3} / 2$ or $0 g^{7} / 2$ orbital.
- Three different orbital angular momentum transfers; $\ell=0,2$ or 4 .

Each scenario has a characteristic angular distribution.

- Fit data to DWBA calculations to determine ℓ and s.

Angular Distribution Results

- Angular distributions were extracted for $12{ }^{96} \mathrm{Sr}$ states.
- Shell model calculations are being carried out to compare spectroscopic factors.
- Insufficient statistics to measure angular distribution of $1465 \mathrm{keV}{ }^{96} \mathrm{Sr}$ state.

Angular Distribution Results

- Angular distributions were extracted for $12{ }^{96} \mathrm{Sr}$ states.
- Shell model calculations are being carried out to compare spectroscopic factors.
- Insufficient statistics to measure angular distribution of $1465 \mathrm{keV}{ }^{96} \mathrm{Sr}$ state.
γ-Rays Gated on Excitation Energy Range $\mathbf{9 0 0} \mathbf{- 1 9 0 0} \mathbf{~ k e V}$

Mixing Between Excited 0^{+}States in ${ }^{96} \mathrm{Sr}$

- Simulate decay of 1229 keV \& 1465 keV states using realistic Geant model and compare counts.

Mixing Between Excited 0^{+}States in ${ }^{96} \mathrm{Sr}$

- Simulate decay of 1229 keV \& 1465 keV states using realistic Geant model and compare counts.
- Mixing amplitude of $\mathrm{O}_{3}{ }^{+}: \mathrm{O}_{2}{ }^{+}$states, $a^{2}=0.5(2)$.

$\boldsymbol{\gamma}$-Rays Gated on Excitation Energy Range 900-1900 keV

Mixing Between Excited 0^{+}States in ${ }^{96} \mathrm{Sr}$

- Simulate decay of 1229 keV \& 1465 keV states using realistic Geant model and compare counts.
- Mixing amplitude of $\mathrm{O}_{3}{ }^{+}: \mathrm{O}_{2}^{+}$states, $a^{2}=0.5(2)$.
- Constrains deformation: $\beta=0.30(5)$.

Relationship between β and a for $\rho^{2}(E 0)=0.185(50)$

${ }^{96} \mathrm{Sr} \gamma$-Rays From Excited 0^{+}States

Mixing Between Excited 0^{+}States in ${ }^{98} \mathrm{Sr}$

- Simulate decay of 1229 keV \& 1465 keV states using realistic Geant model and compare counts. Mixing amplitude of $\mathrm{O}_{3}{ }^{+}: \mathrm{O}_{2}{ }^{+}$states, $a^{2}=0.5(2)$.

Constrains deformation: $\beta=0.30(5)$.

G. Lhersonneau et al., Phys. Rev. C 49, (1994) 1379

Summary

- ${ }^{95} \mathrm{Sr}(\mathrm{d}, \mathrm{p})$ to investigate single particle structure of ${ }^{96} \mathrm{Sr}$ states.
- First high mass ($\mathrm{A}>30$) experiments of this kind at TRIUMF.
- Measured 12 angular distributions, including a new state at $\sim 3.5 \mathrm{MeV}$.
- Extracted information about the state spins and underlying single particle configurations.
- Use X -ray analysis to measure mixing between excited 0^{+}states in ${ }^{96} \mathrm{Sr}$.

Many thanks to S I 389 Collaboration;

P. C. Bender ${ }^{2}$, R. Krücken ${ }^{1,2}$, K. Wimmer ${ }^{3}$, F. Ames ${ }^{2}$, C. Andreoiu ${ }^{4}$, C. S. Bancroft ${ }^{3}$, R. Braid ${ }^{5}$, T. Bruhn ${ }^{2}$, W. Catford ${ }^{6}$, A. Cheeseman ${ }^{2}$, D. S. Cross ${ }^{4}$, C. Aa. Diget 7, T. Drake ${ }^{8}$, A. Garnsworthy 2, G. Hackman ${ }^{2}$, R. Kanungo ${ }^{9}$, A. Knapton ${ }^{6}$, W. Korten ${ }^{2}$, K. Kuhn ${ }^{5}$, J. Lassen ${ }^{2}$, R. Laxdal 2, M. Marchetto ${ }^{2}$, A. Matta ${ }^{6}$, D. Miller ${ }^{2}$, M. Moukaddam ${ }^{2}$, N. Orr ${ }^{10}$, N. Sachmpazidi ${ }^{3}$, A. Sanetullaev ${ }^{2}$, N. Termpstra ${ }^{3}$, C. Unsworth ${ }^{2}$, P. J. Voss ${ }^{4}$
1. University of British Columbia, 2. TRIUMF, 3. Central Michigan University, 4. Simon Fraser University, 5. Colorado School of Mines, 6. University of Surrey, 7. University of York, 8. University of Toronto, 9. Saint Mary's University, 10. LPC Caen.

Cansadian Institute of Nuclear Physics

Institut canadicn de physique nuelesire

Science \& Technology Facilities Council

NSERC CRSNG

Thank you! Merci!

Follow us at TRIUMFLab

Angular Distribution Analysis

Upper left: Identified 1180 keV Y -ray transition

Upper right: Coincident γ-rays.
Bottom left: Excitation energy coincident with 1180 keV - -ray.

Bottom right: Excitation energy versus θ_{cm} coincident with $1180 \mathrm{keV} \mathrm{\gamma}$-ray.

Gamma Singles Gated on Excitation Energy Range $1505.0-2505.0 \mathrm{keV}$

Excitation Energy Coincident With Gated Gamma Energy

Gammma Energy Coincident With Gated Gam \& Exc Energy

Excitation Energy Versus $\theta_{\text {cm }}$

Angular Distribution Analysis

Upper left: Identified 1180 keV γ-ray transition

Upper right: Coincident γ-rays.

- Bottom left: Excitation energy coincident with 1180 keV - -ray.
- Bottom right: Excitation energy versus θ_{cm} coincident with $1180 \mathrm{keV} \gamma$-ray.

Gamma Singles Gated on Excitation Energy Range 1505.0-2505.0 keV

Gammma Energy Coincident With Gated Gam \& Exc Energy

Excitation Energy Versus $\theta_{\text {CM }}$

Angular distribution for $1995 \mathrm{keV}{ }^{96} \mathrm{Sr}$ state.

DWBA
${ }^{95} \mathrm{Sr}(\mathrm{d}, \mathrm{d}) @ 5.378 \mathrm{MeV} / \mathrm{u}$
${ }^{95} \mathrm{Sr}(\mathrm{p}, \mathrm{p}) @ 5.378 \mathrm{MeV} / \mathrm{u}$

Comparison of (d,p) Calculations Between Global and Fitted OM

