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Quadrupole Deformation in Nuclei

• Shape	deforma2on	enables	the	nucleus	to	minimize	
its	energy.	

• HFB	calcula2on	(le?)	shows	expected	quadrupole	
deforma2on	across	nuclear	chart.

Quadrupole deformation is a measure of nuclear shape.

Plot source: M. Girod, CEA
01
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Shape Coexistence at Z~40 N~60

• State	of	the	art	(beyond	mean	field)	calcula2ons	predict	binding	energy	as	a	func2on	of	deforma2on.	

• Measurements	of	single	par2cle	levels	in	95,96,97Sr	essen2al	for	a	detailed	descrip2on	of	this	
transi2onal	region.	
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Binding energy curves 
predict almost 

degenerate potential 
minima at N = 60.
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Shape Coexistence at Z~40 N~60

Shape	coexistence	in	atomic	nuclei		
[Rev.	Mod.	Phys.	83,	1467	(2011)]

• The	strong	03+	(1465	keV)	→02+		(1229	keV)	E0	
transi2on	is	characteris2c	of	coexis2ng	shapes.	

• The	deformed	03+	state	at	1465	keV	is	expected	to	
be	the	same	structure	as	the	98Sr	ground	state.
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Shape	coexistence	in	atomic	nuclei		
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Experimental Campaign

94,95,96Sr(d,p)	reactions	to	study	evolution	of	
structure	in	Sr	through	low	energy	single	

particle	states.		
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94,95,96Sr(d,p)	reactions	to	study	evolution	of	
structure	in	Sr	through	low	energy	single	
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Neutron populates one of the empty single particle orbitals
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Experimental Campaign

94,95,96Sr(d,p)	reactions	to	study	evolution	of	
structure	in	Sr	through	low	energy	single	

particle	states.		

Neutron populates one of the empty single particle orbitals

Aims
• Measure	angular	momentum	of	Sr	states.	

• Measure	cross	sec2on,	which	gives	orbital	
occupa2on	number.	

• Compare	occupa2on	numbers	to	large	scale	shell	
model	calcula2ons	that	will	be	carried	out	in	
collabora2on	with	shell	model	experts.
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⁹⁵Sr Beam Delivery at TRIUMF

• A	500	MeV	proton	beam	was	impinged	on	a	UCx	
target.	

• Extracted	isotopes	were	laser	ionized,	mass	
separated	and	transported	to	the	CSB	where	the	
isotopes	were	charge	bred	to	16+.	

• Beam	re-accelerated	to	5.5	MeV/u	and	impinged	
on	0.5mg/cm2	CD2	target	(~106	p.p.s)	.

05



⁹⁵Sr Beam Delivery at TRIUMF

• A	500	MeV	proton	beam	was	impinged	on	a	UCx	
target.	

• Extracted	isotopes	were	laser	ionized,	mass	
separated	and	transported	to	the	CSB	where	the	
isotopes	were	charge	bred	to	16+.	

• Beam	re-accelerated	to	5.5	MeV/u	and	impinged	
on	0.5mg/cm2	CD2	target	(~106	p.p.s)	.

Sr experiments were first high mass (A>30) experiment 
using secondary-accelerated beams at TRIUMF.
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Detector Systems

• Silicon	detector	array.	

• Efficiency	≈	80%.	

• Coverage	≈	80%	of	4π.	

• Ang.	res.	≈	1°.

SHARC

TIGRESS
• 12	HPGe	Clovers.	

• Efficiency	(1	MeV)	≈	10%.	

• Coverage	≈	2π.	

• Energy	res.	(1	MeV)	≈	2	keV.

TIGRESS	and	SHARC	detectors	were	used	to	enable	p-ɣ	coincidence	measurements. 06



SHARC Data
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Particle identification used through dE-E detector arrangement

• Energy	resolu\on	of	SHARC	makes	
extrac\ng	96Sr	states	difficult.	

• Large	amount	of	β	decay	background.
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SHARC Data
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SHARC + TIGRESS Data

• Many	⁹⁶Sr	transi\ons	observed,	indica\ng	
that	many	levels	are	populated.	

• We	only	want	directly	populated	states.

08



SHARC + TIGRESS Data
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SHARC + TIGRESS Data
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Angular Distribution Analysis

2s1/2

1d5/2

1d3/2

0g7/2
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• Transferred	neutron	populates	either	2s½,	1d³⁄₂	or	
0g⁷⁄₂	orbital.	

• Three	different	orbital	angular	momentum	transfers;	
𝓁	=	0,	2	or	4.	

• Each	scenario	has	a	characteris\c	angular	distribu\on.	

• Fit	data	to	DWBA	calcula\ons	to	determine	𝓁	and	S.

09
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• Transferred	neutron	populates	either	2s½,	1d³⁄₂	or	
0g⁷⁄₂	orbital.	

• Three	different	orbital	angular	momentum	transfers;	
𝓁	=	0,	2	or	4.	

• Each	scenario	has	a	characteris\c	angular	distribu\on.	
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1+ or 2+ state
[s1/2][d3/2] configuration

Angular Distribution Analysis

• Transferred	neutron	populates	either	2s½,	1d³⁄₂	or	
0g⁷⁄₂	orbital.	

• Three	different	orbital	angular	momentum	transfers;	
𝓁	=	0,	2	or	4.	

• Each	scenario	has	a	characteris\c	angular	distribu\on.	

• Fit	data	to	DWBA	calcula\ons	to	determine	𝓁	and	S.
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Angular Distribution Analysis

• Transferred	neutron	populates	either	2s½,	1d³⁄₂	or	
0g⁷⁄₂	orbital.	

• Three	different	orbital	angular	momentum	transfers;	
𝓁	=	0,	2	or	4.	

• Each	scenario	has	a	characteris\c	angular	distribu\on.	

• Fit	data	to	DWBA	calcula\ons	to	determine	𝓁	and	S.
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• Angular	distribu\ons	were	extracted	for	
12	⁹⁶Sr	states.	

• Shell	model	calcula\ons	are	being	carried	
out	to	compare	spectroscopic	factors.	

• Insufficient	sta\s\cs	to	measure	angular	
distribu\on	of	1465	keV	⁹⁶Sr	state.
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Mixing Between Excited 0⁺ States in ⁹⁶Sr

• Simulate	decay	of	1229	keV	&	1465	keV	states	
using	realis\c	Geant	model	and	compare	counts.	

• Mixing	amplitude	of	03+:	02+	states,	a2	=	0.5(2).	

• Constrains	deforma\on:	β	=	0.30(5).	

 [keV]γ E
0 100 200 300 400 500 600 700 800 900 1000

 C
ou

nt
s 

/ k
eV

10

210

310

 States+-Rays From Excited 0γSr 96

simulated

11



Mixing Between Excited 0⁺ States in ⁹⁶Sr

 [keV]γ E
0 100 200 300 400 500 600 700 800 900 1000

 C
ou

nt
s 

/ k
eV

10

210

310

 States+-Rays From Excited 0γSr 96

simulatedexperiment

11

• Simulate	decay	of	1229	keV	&	1465	keV	states	
using	realis\c	Geant	model	and	compare	counts.	
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• Simulate	decay	of	1229	keV	&	1465	keV	states	
using	realis\c	Geant	model	and	compare	counts.	

• Mixing	amplitude	of	03+:	02+	states,	a2	=	0.5(2).	

• Constrains	deforma\on:	β	=	0.30(5).	



G. Lhersonneau et al., Phys. Rev. C 49, (1994) 1379

Mixing Between Excited 0⁺ States in ⁹⁶Sr

• Simulate	decay	of	1229	keV	&	1465	keV	states	
using	realis\c	Geant	model	and	compare	counts.	

• Mixing	amplitude	of	03+:	02+	states,	a2	=	0.5(2).	

• Constrains	deforma\on:	β	=	0.30(5).	



Summary

• 95Sr(d,p)	to	inves\gate	single	par\cle	structure	of	⁹⁶Sr	states.	

• First	high	mass	(A>30)	experiments	of	this	kind	at	TRIUMF.	

• Measured	12	angular	distribu\ons,	including	a	new	state	at	~3.5	MeV.	

• Extracted	informa\on	about	the	state	spins	and	underlying	single	par\cle	
configura\ons.	

• Use	Ɣ-ray	analysis	to	measure	mixing	between	excited	0⁺	states	in	⁹⁶Sr.
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S1389 Team

Very Early Results

Thanks!

Many thanks to S1389 Collaboration;SINGLE PARTICLE STRUCTURE AND SHAPES OF EXOTIC Sr
ISOTOPES⇤

S. Cruz1†, P. C. Bender2, R. Krücken1,2, K. Wimmer3, F. Ames2, C. Andreoiu4, C. S. Bancroft3,
R. Braid5, T. Bruhn2, W. Catford6, A. Cheeseman2, D. S. Cross4, C. Aa. Diget7, T. Drake8, A.

Garnsworthy2, G. Hackman2, R. Kanungo9, A. Knapton6, W. Korten2, K. Kuhn5, J. Lassen2, R.
Laxdal2, M. Marchetto2, A. Matta6, D. Miller2, M. Moukaddam2, N. Orr10, N. Sachmpazidi3, A.

Sanetullaev2, N. Termpstra3, C. Unsworth2, P. J. Voss4

1. University of British Columbia, 2. TRIUMF, 3. Central Michigan University, 4. Simon Fraser University, 5. Colorado School of

Mines, 6. University of Surrey, 7. University of York, 8. University of Toronto, 9. Saint Mary’s University, 10. LPC Caen.

Nuclei near the “magic numbers” of protons and neutrons are observed to have a spherical shape for the low lying
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