A NEW (τ AND LATTICE-BASED) DETERMINATION OF $|V_{us}|$

Kim Maltman, York University

with R. J. Hudspith and R. Lewis (York)

and T. Izubuchi, H. Ohki, C. Lehner $+ \cdots$ (RBC/UKQCD)

WNPPC 2017

Banff Center, February 19, 2017

CONTEXT (Pre-2016)

• The > 3 σ low inclusive FB τ FESR $|V_{us}|$ puzzle

• τ result 3.6 σ low: lepton flavor non-universality?? [Recall ~ 4 $\sigma R \left[D^{(*)} \right]$ discrepancy c.f. SM]

BASICS: HADRONIC τ **DECAYS IN THE SM**

- $R_{ij;V/A} \equiv \Gamma[\tau \to \nu_{\tau} \text{ hadrons}_{ij;V/A}(\gamma)] / \Gamma[\tau^{-} \to \nu_{\tau} e^{-} \bar{\nu}_{e}(\gamma)]$
- With $y_{ au} \equiv s/m_{ au}^2$, flavor ij decays in SM [Tsai PRD4 (1971) 2821]

$$\frac{dR_{ij;V+A}}{ds} = \frac{12\pi^2 |V_{ij}|^2 S_{EW}}{m_\tau^2} [1 - y_\tau]^2 \,\tilde{\rho}_{ij;V+A}(s)$$
$$\tilde{\rho}_{ij;V+A}(s) \equiv \left[(1 + 2y_\tau) \,\rho_{ij;V+A}^{(J=1)}(s) + \rho_{ij;V+A}^{(J=0)}(s) \right]$$
kinematic weight : $w_\tau(y) = (1 - y)^2 (1 + 2y)$

• Finite energy sum rules (FESRs) (Cauchy's theorem)

$$\int_{s_{th}}^{s_0} ds \, w(s)\rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s)\Pi(s)$$

$$expt'l \, data \qquad OPE$$

• $s_0 \rightarrow \infty$: generalized dispersion relation

• $R_{ij;V/A}^{w}(s_0)$: re-weighted $R_{ij;V/A}$ analogue $R_{ij;V/A}^{w}(s_0) \sim \int_{th}^{s_0} ds \frac{dR_{ij;V/A}}{ds} \frac{w(s/s_0)}{w_{\tau}(s/m_{\tau}^2)}$

• FB differences:
$$\delta R^w(s_0) \equiv \frac{R^w_{ud;V+A}(s_0)}{|V_{ud}|^2} - \frac{R^w_{us;V+A}(s_0)}{|V_{us}|^2}$$

• **FB FESR**: OPE for $\delta R^w(s_0)$, input $|V_{ud}| \Rightarrow$

$$|V_{us}| = \sqrt{\frac{R_{us;V+A}^{w}(s_{0})}{\frac{R_{ud;V+A}^{w}(s_{0})}{|V_{ud}|^{2}} - [\delta R^{w}(s_{0})]^{OPE}}}$$

Self-consistency: $|V_{us}|$ independent of s_0 , w

• The conventional implementation [Gamiz et al. JHEP03(2003)060]

•
$$s_0 = m_\tau^2$$
, $w = w_\tau$ only (\Rightarrow OPE up to $D = 8$)

 \circ ASSUME D > 4 OPE small

- Variable w, s_0 tests \Rightarrow self-consistency problems
- An alternate implementation [HLMZ17, arXiv:1702.01767]
 - No D > 4 assumptions: effective condensates $C_{D>4}$ from fits to data (variable s_0 required)
 - 3-loop-truncated FOPT D = 2, standard D = 2 + 4error estimates [from comparison to lattice]
 - \circ *w* and *s*₀-stability tests

• The alternate FB FESR implementation results

- $\circ |V_{us}| = 0.2229(22)_{exp}(4)_{th}$
- \circ Resolves long-standing low au $|V_{us}|$ puzzle
- \circ Unphysical s_0 -, w(y)-dependence problems solved

 \circ $|V_{us}|$ increased by \sim 0.0020 with fitted $C_{D>4}$

\circ Similar increase from newer us BF normalizations

• Error budget, 3-weight, Adametz $B[K^{-}\pi^{0}\nu_{\tau}]$, 3-looptruncated FOPT D = 2 fit

	$\delta V_{us} $	$\delta V_{us} $	$\delta V_{us} $
Source	$(w_2 \text{ FESR})$	$(w_3 \text{ FESR})$	$(w_4 \text{ FESR})$
$\delta lpha_s$	0.00001	0.00004	0.00004
δm_s (2 GeV)	0.00017	0.00019	0.00019
$\delta \langle m_s \overline{s} s angle$	0.00035	0.00035	0.00035
$\delta(long \ corr)$	0.00009	0.00009	0.00009
ud exp	0.00027	0.00028	0.00028
us exp	0.00226	0.00227	0.00227

\circ us spectral integrals dominant current error source

 Limitation for near-term improvement: ~ 25% highermultiplicity "residual mode" contribution error (sub-% us spectral integral error to be fully competitive)

Relative exclusive mode $R^w_{us:V+A}$ contributions

Wt	s ₀	K	$K\pi$	$K\pi\pi$	Residual
	$[GeV^2]$			(B-factory)	
w_2	2.15	0.496	0.426	0.062	0.010
	3.15	0.360	0.414	0.162	0.065
w_{3}	2.15	0.461	0.446	0.073	0.019
	3.15	0.331	0.415	0.182	0.074
w_{4}	2.15	0.441	0.456	0.082	0.021
	3.15	0.314	0.411	0.194	0.081

A LATTICE+ τ -BASED ALTERNATIVE

- Work with J. Hudspith, R. Lewis (York) and T. Izubuchi,
 H. Ohki, C. Lehner + ··· (RBC/UKQCD)
- Basic idea: generalized dispersion relations for products of combination $\tilde{\Pi}$ of J = 0, 1 us V + A polarizations with weights having poles at Euclidean Q^2
 - $\Pi(Q^2)$: polarization sum with spectral function $\tilde{\rho}(s)$ (experimental $dR_{us;V+A}/ds$)
 - Theory: Lattice *us* 2-point function data (no OPE)
 - Weights tunable, allow suppression of larger-error, higher-multiplicity us spectral contributions

More on the lattice-inclusive $us \ \tau$ approach

• $|V_{us}|^2 \tilde{\rho}_{us;V+A}(s)$ from experimental $dR_{us;V+A}/ds$

$$\tilde{\rho}_{us;V+A}(s) \equiv \left(1 + 2\frac{s}{m_{\tau}^2}\right) \rho_{us;V+A}^{(J=1)}(s) + \rho_{us;V+A}^{(J=0)}(s)$$

(no continuum us J = 0 subtraction required)

• Associated (kinematic-singularity-free) polarization

$$\tilde{\Pi}_{us;V+A}(Q^2) \equiv \left(1 - 2\frac{Q^2}{m_\tau^2}\right) \Pi_{us;V+A}^{(J=1)}(Q^2) + \Pi_{us;V+A}^{(J=0)}(Q^2)$$

•
$$\tilde{\rho}_{us;V+A}(s) \sim s$$
 as $s \to \infty$

• For weights $w_N(s) \equiv \frac{1}{\prod_{k=1}^N (s+Q_k^2)}$, $Q_k^2 > 0$, $N \ge 3$, obtain convergent, unsubtracted 'dispersion relation'

$$\int_{th}^{\infty} ds \, w_N(s) \, \tilde{\rho}_{us;V+A}(s) = \sum_{k=1}^{N} \frac{\tilde{\Pi}_{us;V+A}(Q_k^2)}{\prod_{j \neq k} \left(Q_j^2 - Q_k^2\right)}$$

 \circ Lattice data for $\tilde{\Pi}_{us;V+A}(Q_k^2)$ on RHS

- \circ LHS from experimental $dR_{us;V+A}/ds$, up to $|V_{us}|^2$
- $w_N(s)$: rapid fall-off if all $Q_k^2 < 1 \ GeV^2$ $\Rightarrow K, K\pi$ dominate LHS, near-endpoint multiparticle, $s > m_{\tau}^2$ contributions strongly suppressed
- \circ Optimization: increasing $\{Q_k^2\}$ decreases RHS lattice error, increases LHS experimental error

• PRELIMINARY inclusive lattice us V+A results

• $N = 4, C = 0.7 \ GeV^2, \ \Gamma[K_{\mu 2}]: |V_{us}| = 0.2258(10)_{exp}(13)_{th}$

• $N = 4, C = 0.7 \ GeV^2, B_K^{\tau}: |V_{us}| = 0.2241(14)_{exp}(13)_{th}$

- Advantages of lattice-based vs. FB FESR approach
 - K essentially saturates J = 0, A contribution $\Rightarrow |V_{us}|$ determinations possible with or without K pole
 - Reduced expt'l error *without theory error blowup*
 - Theory side: lattice in place of OPE ⇒ theory errors systematically improvable

• Stability e.g.

 $N = 3, 4, 5, B_K^{\tau}$ choice for K pole contribution

Comparison to $|V_{us}|$ from other sources

SUMMARY

- Old 3σ low inclusive FB τ FESR $|V_{us}|$ problem resolved
 - Alternate, no-assumptions implementation: $|V_{us}|$ higher by ~ 0.0020, compatible with other determinations
 - \circ Near-term improvements feasible through improvements in us exclusive mode BFs
 - Highly favorable theoretical error situation
 - However, for competitive $|V_{us}|$ need improvements to old ALEPH higher-multiplicity, low-statistics data [unlikely in the near-term]

• Advantage of new lattice-inclusive $us V + A \tau$ approach

• Theory:

- * Lattice in place of OPE; no us J = 0 subtraction; improvement through increased statistics
- * Parasitic on lattice a_{μ} effort (major effort in lattice community)
- Spectral integrals:
 - * Theory errors still small for weights strongly suppressing higher multiplicity contributions
 - * Strong K, $K\pi$ dominance of spectral integral
 - * Significant experimental improvements possible through just improved $K\pi$ BFs, distributions