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LIFE CYCLE OF STARS
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Milky Way galaxy
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WHY CONNECTING?

April 25, 2013, http://msutoday.msu.edu/ 
Facility for Rare Isotope Beam (FRIB), cyclotron stopper

The EAGLE Project
http://icc.dur.ac.uk/Eagle/index.php

Nuclear physics

Cosmological simulations

• Nuclear physics experiments and 
theories provide an explanation of how 
elements can be synthesized.

• Galaxy evolution in a cosmological context 
inform us on how galaxies form, how gas 
flows inside and around galaxies, and how 
elements are mixed and recycled into stars.
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CHEMICAL EVOLUTION PIPELINE

•  SYGMA - Stellar Yields for Galactic Modeling Applications (C. Ritter et al. in prep.)

•  OMEGA - One-zone Model for the Evolution of GAlaxies (Côté et al. 2016c)

•  GAMMA - Galaxy Assembly with Merger-trees for Modeling Abundances (Côté et al. in prep.)

Côté et al. (2016c)

•  STELLAB - STELLar ABundances, observational data plotting tool

Open-source codes http://nugrid.github.io/NuPyCEE/
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CHEMICAL EVOLUTION PIPELINE

Côté et al. (2016a)

Côté et al. (2016c)

Uncertainties in chemical evolution models, see also 
Romano et al. (2005, 2010)

Matteucci et al. (2009)
Molla et al. (2015)
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Galactic inflows Galactic outflows
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Markov Chain Monte Carlo (MCMC)
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emcee code (Foreman-Mackey et al. 2013)



Côté et al. (2017)

Sculptor

NuGrid yields 
Ye prescription 
C. Ritter et al. in prep.

CONSTRAINTS FROM STELLAR ABUNDANCES
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Côté et al. (2016c)

NuGrid yields 
Ye prescription 
C. Ritter et al. in prep.

CONSTRAINTS FROM STELLAR ABUNDANCES
Sculptor

Côté et al. (2017)
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What is the main astrophysical site r-process elements? 
Core-collapse or compact binary mergers?

Hirai et al. (2015)

NSM only with tdel = 100 Myr

Dwarf galaxy

Shen et al. (2015)

Milky Way

NSM only

Milky Way

NSM only

Komiya & Shigeyama (2016)

MULTIPLE CONSTRAINTS

See also 
Ishimaru et al. (2015)

Milky Way
NSM only

van de Voort et al. (2015)
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MULTIPLE CONSTRAINTS

Côté et al. (2016d)

redshift

https://www.ligo.caltech.edu

• LIGO, Laser Interferometer 
   Gravitational-Wave Observatory

Constraint from Advanced LIGO (Abbott et al. 2016)
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MULTIPLE CONSTRAINTS

Côté et al. (2016d)

Constraint from Advanced LIGO (Abbott et al. 2016)

redshift

Rate density needed 
in GCE studies

Rate density 
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PROBING NUCLEAR ASTROPHYSICS
Kobayashi et al. (2011a)
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Christian Ritter and the UVic stellar astrophysics team 
analyzed NuGrid massive star models and found that  

some models experience O-C shell mergers.  After 
calculating the nucleosynthesis signature, they found:

Kobayashi et al. (2011a)
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CHEMICAL EVOLUTION PIPELINE

Côté et al. (2016c)
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GALAXY ASSEMBLY
Griffen et al. (2016) - The Caterpillar Project

The Illustris Project
http://www.illustris-project.org/media/

Galaxy mergers

Dark matter halo mass similar to the Milky Way

GAMMA calculates the chemical 
evolution of 280 isotopes.

Côté et al. in prep.

Time
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http://www.illustris-project.org/media/


CONCLUSIONS

Multiple constraints are needed to ensure reliable interpretations of numerical predictions. 

Our flexible chemical evolution pipeline provides allows to probe  
the impact of nuclear astrophysics in a galactic chemical evolution context. 

A better quantification of uncertainties propagation will improve our ability to constrain 
and understand the formation history of the Milky Way in a cosmological context. 

Côté et al. (2016c)

Open-source codes http://nugrid.github.io/NuPyCEE/ 17



Milky Way galaxy

GALACTIC CHEMICAL EVOLUTION



CONTRIBUTION OF DIFFERENT STARS

Core-collapse supernova

O, Mg, Ca, Si, Ti, Fe, ..
Crab Nebula



Type Ia supernova
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Core-collapse SNe (Ca, Fe)
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