Ground state spin of ${ }^{101} \mathrm{Sn}$ and the role of the tensor force in exotic nuclei

Joochun (Jason) Park

TRIUMF/UBC
WNPPC 2017, Feb. 19

Introduction: two-body tensor force in exotic nuclei
T. Otsuka et al., PRL 95, 232502 (2005) and T. Otsuka et al., PRL 104, 012501 (2010)

Introduction: literature on ${ }^{101}$ Sn's ground state spin

$\beta-\gamma, \beta p$ decay spectroscopy of ${ }^{101} \mathrm{Sn}$

O. Kavatsyuk et al.,

EPJ A 31, 319 (2007)
$\gamma-\beta \mathrm{p}: 5 / \mathbf{2}^{+}$with $E\left(7 / 2^{+}\right)-E\left(5 / 2^{+}\right)=172-\mathrm{keV}$ [D. Seweryniak et al., PRL 99, 022504 (2007)]

K. Straub, PhD thesis, TU Munich (2010)

Inconclusive from these studies
$\alpha-\gamma$ decay spectroscopy of ${ }^{109} \mathrm{Xe} \rightarrow{ }^{105} \mathrm{Te} \rightarrow{ }^{101} \mathrm{Sn}$ chain

RIKEN SRC

Fragmentation reaction

Tag isotope's A and Z event-by-event

${ }^{9} \mathrm{Be}$
target

(A/q)

Results: isotope production (8.5 days of beam)

Method: decay spectroscopy

Results: β-delayed γ ray spectra of ${ }^{101} \mathrm{Sn}$

This work

Discussion: comparisons to shell model

Discussion: effective single-particle energies of $g_{7 / 2}, d_{5 / 2}$

Ground-state spin of ${ }^{101} \mathrm{Sn}$

- Sensitive probe of $g_{7 / 2}$ and $d_{5 / 2}$ ESPE near ${ }^{100}$ Sn and two-body tensor force
- 5γ-ray transitions observed, energies in good agreement with SM
- Evidence for significant direct β-decay branch to $\left(9 / 2^{+}\right)$ground state of ${ }^{101} \mathrm{In}$ $\rightarrow J \pi\left({ }^{101} \mathrm{Sn}\right)=7 / 2^{+}$, compatible with theory

Remaining task

- Address the Pandemonium effect: apparent enhancement of I_{β} from γ-ray analysis
\rightarrow more accurate determination of I_{β} to the ground state

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York
J. Park ${ }^{1,2}$, R. Krücken ${ }^{1,2}$, R. Gernhäuser ${ }^{3}$, M. Lewitowicz ${ }^{4}$, S. Nishimura ${ }^{5}$, H. Sakurai6, H. Baba ${ }^{5}$, B. Blank ${ }^{7}$, A. Blazhev ${ }^{8}$, P. Boutachkov ${ }^{9}$, F. Browne ${ }^{10}$, I. Čeliković4, P. Doornenbal ${ }^{5}$, T. Faestermann ${ }^{3}$, Y. Fang ${ }^{11}$, G. de France ${ }^{4}$, N. Goel ${ }^{9}$, M. Górska ${ }^{9}$, S. Ilieva ${ }^{12}$, T. Isobe ${ }^{5}$, A. Jungclaus ${ }^{13}$, G. D. Kim ${ }^{14}$, Y.-K. Kim¹4, I. Kojouharov ${ }^{9}$, M. Kowalska ${ }^{15}$, N. Kurz${ }^{9}$, G. Lorusso ${ }^{5}$, D. Lubos ${ }^{3}$, K. Moschner ${ }^{8}$, I. Nishizuka ${ }^{16}$, Z. Patel ${ }^{17}$, M. M. Rajabali', S. Rice ${ }^{17}$, H. Schaffner ${ }^{9}$, L. Sinclair ${ }^{18}$, P.-A. Söderström ${ }^{5}$, K. Steiger ${ }^{3}$, T. Sumikama ${ }^{16}$, Z. Wang ${ }^{1}$, H. Watanabe ${ }^{19}$, J. Wu ${ }^{13}$, and Z. Y. Xu ${ }^{6}$

1. TRIUMF, Canada
2. University of British Columbia, Canada
3. TU Munich, Germany
4. GANIL, France
5. RIKEN Nishina Center, Japan
6. University of Tokyo, Japan
7. CENBG, France
8. University of Cologne, Germany
9. GSI, Germany
10. Brighton University, UK
11. Osaka University, Japan
12. TU Darmstadt, Germany
13. IES CSIS, Spain
14. Institute for Basic Science, Korea
15. CERN, Switzerland
16. Tohoku University, Japan
17. Surrey University, UK
18. University of York, UK
19. Beihang University, China
