Coulomb Artifacts and $b \bar{b}$ Hyperfine Splitting in Lattice NRQCD

Ahmed Rayyan
University of Alberta
arayyan@ualberta.ca

February 18, 2017

Based On

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Bottomonium

Bound state of bottom quark-antiquark pair

$$
\frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0
$$

- Υ : triplet state $(\operatorname{spin} 1)$
- η_{b} : singlet state $(\operatorname{spin} 0)$

Bottomonium

Bound state of bottom quark-antiquark pair

$$
\frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0
$$

- Υ : triplet state $(\operatorname{spin} 1)$
- η_{b} : singlet state (spin 0)
- Discovered by BaBar in 2008

Bottomonium

Bound state of bottom quark-antiquark pair

$$
\frac{1}{2} \otimes \frac{1}{2}=1 \oplus 0
$$

- Υ : triplet state ($\operatorname{spin} 1$)
- η_{b} : singlet state (spin 0$)$
- Discovered by BaBar in 2008
- First determination of ground state hyperfine splitting

$$
E_{h f s}=M_{\Upsilon(1 S)}-M_{\eta_{b}(1 S)}
$$

A Controversy

Experiment:

- BaBar, 2008: $71.4_{-4.1}^{+3.5} \mathrm{MeV}$

A Controversy

BaBar Collaboration, PRL 101, 071801 (2008)

A Controversy

Experiment:

- BaBar, 2008: 71.4-4.1 ${ }_{-4}^{+3.5} \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)

A Controversy

Experiment:

- BaBar, 2008: 71.4-4.1 ${ }_{-4}^{+3.5} \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)
- Lattice NRQCD: $70 \pm 9 \mathrm{MeV}$ (HPQCD, 2011)

A Controversy

Experiment:

- BaBar, 2008: 71.4-4.1 MeV
- Belle, 2012: $57.9 \pm 2.3 \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)
- Lattice NRQCD: $70 \pm 9 \mathrm{MeV}$ (HPQCD, 2011)

A Controversy

Belle Collaboration, PRL 109, 232002 (2012)

A Controversy

Experiment:

- BaBar, 2008: 71.4-4.1 ${ }_{-4}^{+3.5} \mathrm{MeV}$
- Belle, 2012: $57.9 \pm 2.3 \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)
- Lattice NRQCD: $70 \pm 9 \mathrm{MeV}(H P Q C D, 2011)$
- Lattice NRQCD $60.0 \pm 6.4 \mathrm{MeV}$ (HPQCD, 2014)
- Lattice NRQCD 52.9 $\pm 5.5 \mathrm{MeV}$ (Baker et. al. 2015)

A Controversy

Experiment:

- BaBar, 2008: $71.4_{-4.1}^{+3.5} \mathrm{MeV}$
- Belle, 2012: $57.9 \pm 2.3 \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)
- Lattice NRQCD: $70 \pm 9 \mathrm{MeV}$ (HPQCD, 2011)
- Lattice NRQCD $60.0 \pm 6.4 \mathrm{MeV}$ (HPQCD, 2014)
- Lattice NRQCD $52.9 \pm 5.5 \mathrm{MeV}$ (Baker et. al. 2015)

Based on same lattice data; only difference is in "matching"

A Controversy

Experiment:

- BaBar, 2008: 71.4-4.1 MeV
- Belle, 2012: $57.9 \pm 2.3 \mathrm{MeV}$

Theory:

- NRQCD: $41 \pm 14 \mathrm{MeV}$ (Kniel et. al. 2004)
- Lattice NRQCD: $70 \pm 9 \mathrm{MeV}$ (HPQCD, 2011)
- Lattice NRQCD $60.0 \pm 6.4 \mathrm{MeV}$ (HPQCD, 2014)
- Lattice NRQCD $52.9 \pm 5.5 \mathrm{MeV}$ (Baker et. al. 2015)

Based on same lattice data; only difference is in "matching"
\Rightarrow Matching procedure should be investigated

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass ($\sim m_{q}$)
- Inverse Bohr radius $\left(\sim m_{q} v \ll m_{q}\right)$
- Binding energy $\left(\sim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$
- Confinement $\left(\sim \Lambda_{Q C D} \lesssim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass ($\sim m_{q}$)
- Inverse Bohr radius $\left(\sim m_{q} v \ll m_{q}\right)$
- Binding energy $\left(\sim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$
- Confinement $\left(\sim \Lambda_{Q C D} \lesssim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$

Lattice NRQCD approach:

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass $\left(\sim m_{q}\right)$
- Inverse Bohr radius ($\sim m_{q} v \ll m_{q}$)
- Binding energy $\left(\sim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$
- Confinement $\left(\sim \Lambda_{Q C D} \lesssim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$

Lattice NRQCD approach:

- Separate hard modes using lattice spacing a : $m_{q} v \ll \frac{1}{a} \ll m_{q}$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass $\left(\sim m_{q}\right)$
- Inverse Bohr radius ($\sim m_{q} v \ll m_{q}$)
- Binding energy $\left(\sim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$
- Confinement $\left(\sim \Lambda_{Q C D} \lesssim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$

Lattice NRQCD approach:

- Separate hard modes using lattice spacing $m_{q} v \ll \frac{1}{a} \ll m_{q}$
- Integrate out $k \geq \frac{1}{a}$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass ($\sim m_{q}$)
- Inverse Bohr radius $\left(\sim m_{q} v \ll m_{q}\right)$
- Binding energy $\left(\sim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$
- Confinement $\left(\sim \Lambda_{Q C D} \lesssim m_{q} v^{2} \ll m_{q} v \ll m_{q}\right)$

Lattice NRQCD approach:

- Separate hard modes using lattice spacing $m_{q} v \ll \frac{1}{a} \ll m_{q}$
- Integrate out $k \geq \frac{1}{a}$
- Soft(er) modes simulated on the lattice

$\mathcal{O}\left(v^{4}\right)$ NRQCD Lagrangian (Kinetic + HFS)

$$
\mathcal{L}_{\text {matter }}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q, \quad q=\binom{\psi}{\chi}
$$

$\mathcal{O}\left(v^{4}\right)$ NRQCD Lagrangian (Kinetic + HFS)

$$
\begin{gathered}
\mathcal{L}_{\text {matter }}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q, \quad q=\binom{\psi}{\chi} \\
\downarrow \\
\mathcal{L}_{\text {matter }}=\psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m_{q}}+\frac{\mathbf{D}^{4}}{8 m_{q}^{3}}+c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2 m_{q}}+\ldots\right) \psi
\end{gathered}
$$

$\mathcal{O}\left(v^{4}\right)$ NRQCD Lagrangian (Kinetic + HFS)

$$
\begin{gathered}
\mathcal{L}_{\text {matter }}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q, \quad q=\binom{\psi}{\chi} \\
\downarrow \\
\mathcal{L}_{\text {matter }}=\psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m_{q}}+\frac{\mathbf{D}^{4}}{8 m_{q}^{3}}+c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2 m_{q}}+\ldots\right) \psi \\
+(\psi \rightarrow \chi)
\end{gathered}
$$

$\mathcal{O}\left(v^{4}\right)$ NRQCD Lagrangian (Kinetic + HFS)

$$
\begin{gathered}
\mathcal{L}_{\text {matter }}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m_{q}\right) q, \quad q=\binom{\psi}{\chi} \\
\downarrow \\
\mathcal{L}_{\text {matter }}=\psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m_{q}}+\frac{\mathbf{D}^{4}}{8 m_{q}^{3}}+c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2 m_{q}}+\ldots\right) \psi \\
+(\psi \rightarrow \chi) \\
+d_{\sigma} \frac{4 \alpha_{s}}{3 m_{q}^{2}} \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi+\ldots
\end{gathered}
$$

Matching

Tune matching coefficients so that, order by order in v :

NRQCD amplitude $=$ QCD amplitude

Matching

Tune matching coefficients so that, order by order in v : NRQCD amplitude $=$ QCD amplitude

- Compute RHS perturbatively

Matching

Tune matching coefficients so that, order by order in v : NRQCD amplitude $=$ QCD amplitude

- Compute RHS perturbatively
- Lattice simulations dependent on cutoff $\frac{1}{a}$

Matching

Tune matching coefficients so that, order by order in v :

$$
\text { NRQCD amplitude }=\text { QCD amplitude }
$$

- Compute RHS perturbatively
- Lattice simulations dependent on cutoff $\frac{1}{a}$
- Matching coefficient exactly cancels this dependence

Matching

Tune matching coefficients so that, order by order in v :

NRQCD amplitude $=$ QCD amplitude

- Compute RHS using perturbatively
- Lattice simulations dependent on cutoff $\frac{1}{a}$
- Matching coefficient exactly cancels this dependence

Interested in d_{σ} linear dependence on $a m_{q}$ (linear artifacts)

Coulomb Linear Artifacts

Where would they come from?

NRQCD Planar Ladder Diagram

Coulomb Linear Artifacts

Where would they come from?

$$
\mathcal{M}_{N R Q C D}^{C} \propto \alpha_{s} m_{q}\left(\int_{|\boldsymbol{p}|}^{1 / a} \frac{d k}{k^{2}}\right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi
$$

Coulomb Linear Artifacts

Where would they come from?

$$
\mathcal{M}_{N R Q C D}^{C} \propto \alpha_{s} m_{q}\left(\int_{|\boldsymbol{p}|}^{1 / a} \frac{d k}{k^{2}}\right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi
$$

- IR cutoff gives $\propto \frac{m_{q} \alpha_{s}}{|\boldsymbol{p}|}=\frac{\alpha_{s}}{v}$
- UV cutoff gives $\propto a m_{q} \alpha_{s}$

Coulomb Linear Artifacts

Where would they come from?

$$
\mathcal{M}_{N R Q C D}^{C} \propto \alpha_{s} m_{q}\left(\int_{|\boldsymbol{p}|}^{1 / a} \frac{d k}{k^{2}}\right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi
$$

- IR cutoff gives $\propto \frac{m_{q} \alpha_{s}}{|\boldsymbol{p}|}=\frac{\alpha_{s}}{v}$
- UV cutoff gives $\propto a m_{q} \alpha_{s}$
- Only source of linear artifact is single Coulombic exchange

Coulomb Linear Artifacts

Where would they come from?

$$
\mathcal{M}_{N R Q C D}^{C} \propto \alpha_{s} m_{q}\left(\int_{|\boldsymbol{p}|}^{1 / a} \frac{d k}{k^{2}}\right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi
$$

- IR cutoff gives $\propto \frac{m_{q} \alpha_{s}}{|\boldsymbol{p}|}=\frac{\alpha_{s}}{v}$
- UV cutoff gives $\propto a m_{q} \alpha_{s}$
- Only source of linear artifact is single Coulombic exchange

Coulomb linear artifact contribution to d_{σ} :

$$
-\nu \frac{16}{3 \pi} C_{F} \sim-1.87
$$

Coulomb Linear Artifacts

Where would they come from?

$$
\mathcal{M}_{N R Q C D}^{C} \propto \alpha_{s} m_{q}\left(\int_{|\boldsymbol{p}|}^{1 / a} \frac{d k}{k^{2}}\right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi
$$

- IR cutoff gives $\propto \frac{m_{q} \alpha_{s}}{|\boldsymbol{p}|}=\frac{\alpha_{s}}{v}$
- UV cutoff gives $\propto a m_{q} \alpha_{s}$
- Only source of linear artifact is single Coulombic exchange

Coulomb linear artifact contribution to d_{σ} :

$$
-\nu \frac{16}{3 \pi} C_{F} \sim-1.87
$$

HPQCD result includes linear term in d_{σ}

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

$$
E_{h f s} \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2}
$$

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

- Solve Schrodinger equation with Coulomb potential on a lattice

$$
E_{h f s} \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2}
$$

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

- Solve Schrodinger equation with Coulomb potential on a lattice

$$
\begin{aligned}
E_{h f s} & \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2} \\
& =\frac{C_{F}^{3} \alpha_{s}^{3} m_{q}^{3}}{8 \pi}\left[1-\frac{1}{2} \bar{a}^{2}+\mathcal{O}\left(\bar{a}^{4}\right)\right]
\end{aligned}
$$

Schrodinger Matching

> T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

- Solve Schrodinger equation with Coulomb potential on a lattice

$$
\begin{aligned}
E_{h f s} & \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2} \\
& =\frac{C_{F}^{3} \alpha_{s}^{3} m_{q}^{3}}{8 \pi}\left[1-\frac{1}{2} \bar{a}^{2}+\mathcal{O}\left(\bar{a}^{4}\right)\right]
\end{aligned}
$$

No linear term in a!

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

- Solve Schrodinger equation with Coulomb potential on a lattice

$$
\begin{aligned}
E_{h f s} & \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2} \\
& =\frac{C_{F}^{3} \alpha_{s}^{3} m_{q}^{3}}{8 \pi}\left[1-\frac{1}{2} \bar{a}^{2}+\mathcal{O}\left(\bar{a}^{4}\right)\right]
\end{aligned}
$$

No linear term in a!
$\Rightarrow d_{\sigma}$ should not contain linear term

Schrodinger Matching

> T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $v \sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto\left(\frac{\alpha_{s}}{v}\right)^{n}$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

- Solve Schrodinger equation with Coulomb potential on a lattice

$$
\begin{aligned}
E_{h f s} & \propto\langle 100| \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi|100\rangle=\left|\Psi_{100}(0)\right|^{2} \\
& =\frac{C_{F}^{3} \alpha_{s}^{3} m_{q}^{3}}{8 \pi}\left[1-\frac{1}{2} \bar{a}^{2}+\mathcal{O}\left(\bar{a}^{4}\right)\right]
\end{aligned}
$$

No linear term in a!
$\Rightarrow d_{\sigma}$ should not contain linear term
\Rightarrow HPQCD result contains sprious contribution

Ground State Hyperfine Splitting

Ground State Hyperfine Splitting

$$
E_{\text {hfs }}^{\text {latice }}=E_{h f s}\left[1-(\Lambda a)^{2}+\mathcal{O}\left(a^{4}\right)\right], \quad \Lambda=\frac{C_{F} \alpha_{s} m_{q}}{2 \sqrt{2}} \sim 530 \mathrm{MeV}
$$

Ground State Hyperfine Splitting

$$
E_{h f s}^{\text {lattice }}=E_{h f s}\left[1-(\Lambda a)^{2}+\mathcal{O}\left(a^{4}\right)\right], \quad \Lambda=\frac{C_{F} \alpha_{s} m_{q}}{2 \sqrt{2}} \sim 530 \mathrm{MeV}
$$

Extrapolation to small a : 52.7 MeV

Ground State Hyperfine Splitting

$$
E_{h f s}^{\text {lattice }}=E_{h f s}\left[1-(\Lambda a)^{2}+\mathcal{O}\left(a^{4}\right)\right], \quad \Lambda=\frac{C_{F} \alpha_{s} m_{q}}{2 \sqrt{2}} \sim 530 \mathrm{MeV}
$$

Extrapolation to small a : 52.7 MeV

- HPQCD result: $60.0 \pm 6.4 \mathrm{MeV}$
- Baker et. al. result: $52.9 \pm 5.5 \mathrm{MeV}$

Ground State Hyperfine Splitting

$$
E_{h f s}^{\text {lattice }}=E_{h f s}\left[1-(\Lambda a)^{2}+\mathcal{O}\left(a^{4}\right)\right], \quad \Lambda=\frac{C_{F} \alpha_{s} m_{q}}{2 \sqrt{2}} \sim 530 \mathrm{MeV}
$$

Extrapolation to small a: 52.7 MeV

- HPQCD result: $60.0 \pm 6.4 \mathrm{MeV}$
- Baker et. al. result: $52.9 \pm 5.5 \mathrm{MeV}$

Ground State Hyperfine Splitting

$$
E_{h f s}^{\text {attice }}=E_{h f s}\left[1-(\Lambda a)^{2}+\mathcal{O}\left(a^{4}\right)\right], \quad \Lambda=\frac{C_{F} \alpha_{s} m_{q}}{2 \sqrt{2}} \sim 530 \mathrm{MeV}
$$

Extrapolation to small a: 52.7 MeV

- HPQCD result: $60.0 \pm 6.4 \mathrm{MeV}$
- Baker et. al. result: $52.9 \pm 5.5 \mathrm{MeV}$

Resolved ambiguity in the lattice data!

Conclusion

- Revised matching procedure for lattice NRQCD
- Lattice data does not contain Coulomb linear artifacts
- Final lattice prediction:

$$
E_{h f s}=52.9 \pm 5.5 \mathrm{MeV}
$$

- Agrees with Belle: $57.9 \pm 2.3 \mathrm{MeV}$

References

- B. A. Kniehl, A. Penin, A. Pineda, V. Smirnov, M. Steinhauser, PRL 92, 242001 (2004).
- R. J. Dowdall et al. [HPQCD Collaboration], PRD 85, 054509 (2012) [Erratum-ibid. 104, 199901 (2010)]
- R. J. Dowdall et al. [HPQCD Collaboration], PRD 89, 031502 (2014) [Erratum-ibid. 92, 039904 (2015)]
- M. Baker, A. A. Penin, D. Seidel and N. Zerf, PRD 92, 054502 (2015)

Why not Lattice QCD?

- To accomodate short-distance effects: $a \ll \frac{1}{m_{q}}$
- To include NP effects: $\frac{1}{\Lambda_{Q C D}} \ll L$
- Number of points: $\left(\frac{L}{a}\right)^{4} \gg\left(\frac{m_{q}}{\Lambda_{Q C D}}\right)^{4} \sim 20^{4}$ for $m_{b} \sim 5 \mathrm{GeV}$
- Lattice NRQCD: $\left(\frac{L}{a}\right)^{4} \gg\left(\frac{m_{q} v}{\Lambda_{Q C D}}\right)^{4} \sim 6^{4}$ for $m_{b} \sim 5 \mathrm{GeV}$

$b \bar{b}$ Spectrum

J-M Richard, arXiv:1205.4326 (2012)

Babar decay, all background subtracted

BaBar Collaboration, PRL 101, 071801 (2008)

