Coulomb Artifacts and $b\bar{b}$ Hyperfine Splitting in Lattice NRQCD

Ahmed Rayyan

University of Alberta

arayyan@ualberta.ca

February 18, 2017

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Ahmed Rayyan WNPPC 2017

▲ 同 ▶ → ● 三

글▶ 글

Bottomonium

Bound state of bottom quark-antiquark pair

$$\frac{1}{2}\otimes \frac{1}{2}=1\oplus 0$$

- Υ : triplet state (spin 1)
- η_b : singlet state (spin 0)

Bottomonium

Bound state of bottom quark-antiquark pair

$$\frac{1}{2}\otimes \frac{1}{2}=1\oplus 0$$

- Υ : triplet state (spin 1)
- η_b : singlet state (spin 0)
 - Discovered by BaBar in 2008

Bottomonium

Bound state of bottom quark-antiquark pair

$$\frac{1}{2}\otimes \frac{1}{2}=1\oplus 0$$

- Υ : triplet state (spin 1)
- η_b : singlet state (spin 0)
 - Discovered by BaBar in 2008
 - First determination of ground state hyperfine splitting

$$E_{hfs} = M_{\Upsilon(1S)} - M_{\eta_b(1S)}$$

Experiment:

• BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV

A ►

æ

A Controversy

BaBar Collaboration, PRL 101, 071801 (2008)

Ahmed Rayyan WNPPC 2017

Experiment:

• BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV

Theory:

• NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)

A Controversy

Experiment:

• BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV

Theory:

- NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)
- Lattice NRQCD: 70 \pm 9 MeV (HPQCD, 2011)

A Controversy

Experiment:

- BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV
- Belle, 2012: 57.9 \pm 2.3 MeV

Theory:

- NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)
- Lattice NRQCD: 70 ± 9 MeV (HPQCD, 2011)

A Controversy

A Controversy

Experiment:

- BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV
- Belle, 2012: 57.9 ± 2.3 MeV

Theory:

- NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)
- Lattice NRQCD: 70 ± 9 MeV (HPQCD, 2011)
- Lattice NRQCD 60.0 \pm 6.4 MeV (HPQCD, 2014)
- Lattice NRQCD 52.9 \pm 5.5 MeV (Baker et. al. 2015)

A Controversy

Experiment:

- BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV
- Belle, 2012: 57.9 \pm 2.3 MeV

Theory:

- NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)
- Lattice NRQCD: 70 ± 9 MeV (HPQCD, 2011)
- Lattice NRQCD 60.0 \pm 6.4 MeV (HPQCD, 2014)
- Lattice NRQCD 52.9 \pm 5.5 MeV (Baker et. al. 2015)

Based on same lattice data; only difference is in "matching"

A Controversy

Experiment:

- BaBar, 2008: 71.4^{+3.5}_{-4.1} MeV
- $\bullet\,$ Belle, 2012: 57.9 $\pm\,$ 2.3 MeV

Theory:

- NRQCD: 41 ± 14 MeV (Kniel et. al. 2004)
- Lattice NRQCD: 70 ± 9 MeV (HPQCD, 2011)
- Lattice NRQCD 60.0 \pm 6.4 MeV (HPQCD, 2014)
- Lattice NRQCD 52.9 \pm 5.5 MeV (Baker et. al. 2015)

Based on same lattice data; only difference is in "matching" \Rightarrow Matching procedure should be investigated

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass (~ m_q)
- Inverse Bohr radius ($\sim m_q v \ll m_q)$
- Binding energy ($\sim m_q v^2 \ll m_q v \ll m_q$)
- Confinement ($\sim \Lambda_{QCD} \lesssim m_q v^2 \ll m_q v \ll m_q)$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass (~ m_q)
- Inverse Bohr radius ($\sim m_q v \ll m_q)$
- Binding energy ($\sim m_q v^2 \ll m_q v \ll m_q)$
- Confinement (~ $\Lambda_{QCD} \lesssim m_q v^2 \ll m_q v \ll m_q)$

Lattice NRQCD approach:

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass (~ m_q)
- Inverse Bohr radius ($\sim m_q v \ll m_q)$
- Binding energy ($\sim m_q v^2 \ll m_q v \ll m_q$)
- Confinement ($\sim \Lambda_{QCD} \lesssim m_q v^2 \ll m_q v \ll m_q)$

Lattice NRQCD approach:

• Separate hard modes using lattice spacing a: $m_q v \ll \frac{1}{a} \ll m_q$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass $(\sim m_q)$
- Inverse Bohr radius ($\sim m_q v \ll m_q$)
- Binding energy ($\sim m_q v^2 \ll m_q v \ll m_q)$
- Confinement (~ $\Lambda_{QCD} \lesssim m_q v^2 \ll m_q v \ll m_q)$

Lattice NRQCD approach:

- Separate hard modes using lattice spacing $m_q v \ll \frac{1}{a} \ll m_q$
- Integrate out $k \geq \frac{1}{a}$

Lattice NRQCD

Heirachy of energy scales in heavy quarkonium dynamics:

- Rest mass $(\sim m_q)$
- Inverse Bohr radius ($\sim m_q v \ll m_q)$
- Binding energy ($\sim m_q v^2 \ll m_q v \ll m_q)$
- Confinement $(\sim \Lambda_{QCD} \lesssim m_q v^2 \ll m_q v \ll m_q)$

Lattice NRQCD approach:

- Separate hard modes using lattice spacing $m_q v \ll \frac{1}{a} \ll m_q$
- Integrate out $k \geq \frac{1}{a}$
- Soft(er) modes simulated on the lattice

$\mathcal{O}(v^4)$ NRQCD Lagrangian (Kinetic + HFS)

$$\mathcal{L}_{matter} = ar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q}
ight) q, \quad q = \left(egin{array}{c} \psi \ \chi \end{array}
ight)$$

æ

- 4 聞 と 4 臣 と 4 臣 と

$\mathcal{O}(v^4)$ NRQCD Lagrangian (Kinetic + HFS)

$$\mathcal{L}_{matter} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q} \right) q, \quad q = \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$

$$\downarrow$$

$$\mathcal{L}_{matter} = \psi^{\dagger} \left(i D_{0} + \frac{\mathbf{D}^{2}}{2m_{q}} + \frac{\mathbf{D}^{4}}{8m_{q}^{3}} + c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{q}} + \dots \right) \psi$$

æ

<ロト <部ト < 注ト < 注ト

$\mathcal{O}(v^4)$ NRQCD Lagrangian (Kinetic + HFS)

$$\mathcal{L}_{matter} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q} \right) q, \quad q = \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$

$$\downarrow$$

$$\mathcal{L}_{matter} = \psi^{\dagger} \left(i D_{0} + \frac{\mathbf{D}^{2}}{2m_{q}} + \frac{\mathbf{D}^{4}}{8m_{q}^{3}} + c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{q}} + \dots \right) \psi$$

$$+ (\psi \to \chi)$$

æ

- 4 聞 と 4 臣 と 4 臣 と

$\mathcal{O}(v^4)$ NRQCD Lagrangian (Kinetic + HFS)

$$\mathcal{L}_{matter} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_{q} \right) q, \quad q = \begin{pmatrix} \psi \\ \chi \end{pmatrix}$$

$$\downarrow$$

$$\mathcal{L}_{matter} = \psi^{\dagger} \left(i D_{0} + \frac{\mathbf{D}^{2}}{2m_{q}} + \frac{\mathbf{D}^{4}}{8m_{q}^{3}} + c_{F} \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{q}} + \dots \right) \psi$$

$$+ (\psi \rightarrow \chi)$$

$$+ d_{\sigma} \frac{4\alpha_{s}}{3m_{q}^{2}} \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi + \dots$$

æ

- 《圖》 《문》 《문》

Tune matching coefficients so that, order by order in v:

$\mathsf{NRQCD} \ \mathsf{amplitude} = \mathsf{QCD} \ \mathsf{amplitude}$

Ahmed Rayyan WNPPC 2017

A 10

Tune matching coefficients so that, order by order in v:

NRQCD amplitude = QCD amplitude

• Compute RHS perturbatively

Matching

Tune matching coefficients so that, order by order in v:

 $\mathsf{NRQCD} \ \mathsf{amplitude} = \mathsf{QCD} \ \mathsf{amplitude}$

- Compute RHS perturbatively
- Lattice simulations dependent on cutoff $\frac{1}{a}$

Matching

Tune matching coefficients so that, order by order in v:

NRQCD amplitude = QCD amplitude

- Compute RHS perturbatively
- Lattice simulations dependent on cutoff ¹/_a
- Matching coefficient exactly cancels this dependence

Matching

Tune matching coefficients so that, order by order in v:

NRQCD amplitude = QCD amplitude

- Compute RHS using perturbatively
- Lattice simulations dependent on cutoff $\frac{1}{a}$
- Matching coefficient exactly cancels this dependence

Interested in d_{σ} linear dependence on am_q (linear artifacts)

Coulomb Linear Artifacts

Where would they come from?

Ahmed Rayyan WNPPC 2017

э

∃ >

A ►

NRQCD Planar Ladder Diagram

Coulomb Linear Artifacts

Where would they come from?

$$\mathcal{M}_{NRQCD}^{C} \propto lpha_{s} m_{q} \left(\int_{|\boldsymbol{p}|}^{1/a} \frac{dk}{k^{2}}
ight) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi$$

A ►

-

э

Coulomb Linear Artifacts

Where would they come from?

$$\mathcal{M}_{NRQCD}^{C} \propto \alpha_{s} m_{q} \left(\int_{|\boldsymbol{p}|}^{1/a} \frac{dk}{k^{2}} \right) \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi$$

• IR cutoff gives
$$\propto rac{m_q \alpha_s}{|\pmb{p}|} = rac{\alpha_s}{v}$$

• UV cutoff gives $\propto a m_q \alpha_s$

Coulomb Linear Artifacts

Where would they come from?

$$\mathcal{M}_{NRQCD}^{C} \propto lpha_{s} m_{q} \left(\int_{|\pmb{p}|}^{1/a} \frac{dk}{k^{2}}
ight) \psi^{\dagger} \pmb{\sigma} \psi \chi^{\dagger} \pmb{\sigma} \chi$$

- IR cutoff gives $\propto \frac{m_q \alpha_s}{|\mathbf{p}|} = \frac{\alpha_s}{v}$
- UV cutoff gives $\propto am_q lpha_s$
- Only source of linear artifact is single Coulombic exchange

Coulomb Linear Artifacts

Where would they come from?

$$\mathcal{M}_{NRQCD}^{C} \propto lpha_{s} m_{q} \left(\int_{|\pmb{p}|}^{1/a} rac{dk}{k^{2}}
ight) \psi^{\dagger} \pmb{\sigma} \psi \chi^{\dagger} \pmb{\sigma} \chi$$

• IR cutoff gives
$$\propto \frac{m_q \alpha_s}{|\mathbf{p}|} = \frac{\alpha_s}{v}$$

- UV cutoff gives $\propto am_q lpha_s$
- Only source of linear artifact is single Coulombic exchange Coulomb linear artifact contribution to d_{σ} :

$$-
u rac{16}{3\pi} C_F \sim -1.87$$

Coulomb Linear Artifacts

Where would they come from?

$$\mathcal{M}_{NRQCD}^{C} \propto lpha_{s} m_{q} \left(\int_{|\pmb{p}|}^{1/a} rac{dk}{k^{2}}
ight) \psi^{\dagger} \pmb{\sigma} \psi \chi^{\dagger} \pmb{\sigma} \chi$$

• IR cutoff gives
$$\propto \frac{m_q \alpha_s}{|\boldsymbol{p}|} = \frac{\alpha_s}{v}$$

• UV cutoff gives $\propto am_q lpha_s$

• Only source of linear artifact is single Coulombic exchange Coulomb linear artifact contribution to d_{σ} :

$$-\nu \frac{16}{3\pi} C_F \sim -1.87$$

HPQCD result includes linear term in d_{σ}

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v}\sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v} \sim \alpha_{\mathbf{s}}$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v} \sim \alpha_s$

• n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$

• Higher order contributions are not suppressed!

Solution: Resum to all orders

$$E_{hfs} \propto \langle 100 | \, \psi^\dagger oldsymbol{\sigma} \psi \chi^\dagger oldsymbol{\sigma} \chi \, | 100
angle = | \Psi_{100}(0) |^2$$

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v}\sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

• Solve Schrodinger equation with Coulomb potential on a lattice

$$E_{hfs} \propto \langle 100 | \, \psi^{\dagger} m{\sigma} \psi \chi^{\dagger} m{\sigma} \chi \, | 100
angle = | \Psi_{100}(0) |^2$$

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v} \sim \alpha_s$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

• Solve Schrodinger equation with Coulomb potential on a lattice

$$egin{split} \mathcal{E}_{hfs} \propto raket{100} \psi^{\dagger} m{\sigma} \psi \chi^{\dagger} m{\sigma} \chi \ket{100} &= |\Psi_{100}(0)|^2 \ &= rac{\mathcal{C}_F^3 lpha_s^3 m_q^3}{8 \pi} \left[1 - rac{1}{2} ar{m{a}}^2 + \mathcal{O}\left(ar{m{a}}^4
ight)
ight] \end{split}$$

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v}\sim \alpha_{\mathbf{s}}$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

• Solve Schrodinger equation with Coulomb potential on a lattice

$$egin{aligned} \mathcal{E}_{hfs} \propto egin{aligned} &100 | \, \psi^\dagger m{\sigma} \psi \chi^\dagger m{\sigma} \chi \, |100
angle &= |\Psi_{100}(0)|^2 \ &= rac{C_F^3 lpha_s^3 m_q^3}{8 \pi} \left[1 - rac{1}{2} ar{m{a}}^2 + \mathcal{O}\left(ar{m{a}}^4
ight)
ight] \end{aligned}$$

No linear term in a!

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\mathbf{v}\sim \alpha_{s}$

- n-loop planar ladder diagrams $\propto \left(\frac{\alpha_s}{v}\right)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

• Solve Schrodinger equation with Coulomb potential on a lattice

$$\begin{split} \mathcal{E}_{hfs} \propto \langle 100 | \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi | 100 \rangle &= |\Psi_{100}(0)|^{2} \\ &= \frac{C_{F}^{3} \alpha_{s}^{3} m_{q}^{3}}{8\pi} \left[1 - \frac{1}{2} \bar{\boldsymbol{a}}^{2} + \mathcal{O}\left(\bar{\boldsymbol{a}}^{4} \right) \right] \end{split}$$

No linear term in a!

 \Rightarrow d_{σ} should *not* contain linear term

Schrodinger Matching

T. Liu, A. Penin, A. Rayyan JHEP02(2017)084

Problem: For Coulomb bound states, $\textit{v} \sim \alpha_{\textit{s}}$

- n-loop planar ladder diagrams $\propto \left(rac{lpha_{\rm s}}{v}
 ight)^n$
- Higher order contributions are not suppressed!

Solution: Resum to all orders

• Solve Schrodinger equation with Coulomb potential on a lattice

$$\begin{split} \mathsf{E}_{hfs} \propto \langle 100 | \psi^{\dagger} \boldsymbol{\sigma} \psi \chi^{\dagger} \boldsymbol{\sigma} \chi | 100 \rangle &= |\Psi_{100}(0)|^{2} \\ &= \frac{C_{\mathsf{F}}^{3} \alpha_{\mathsf{s}}^{3} m_{q}^{3}}{8\pi} \left[1 - \frac{1}{2} \bar{\boldsymbol{a}}^{2} + \mathcal{O}\left(\bar{\boldsymbol{a}}^{4} \right) \right] \end{split}$$

No linear term in a!

 \Rightarrow d_{σ} should *not* contain linear term

 \Rightarrow HPQCD result contains sprious contribution

Ground State Hyperfine Splitting

Ground State Hyperfine Splitting

$$E_{hfs}^{lattice} = E_{hfs} \left[1 - (\Lambda a)^2 + \mathcal{O}(a^4) \right], \quad \Lambda = rac{C_F lpha_s m_q}{2\sqrt{2}} \sim 530 \,\, \mathrm{MeV}$$

æ

'≣ ▶

Image: A image: A

Ground State Hyperfine Splitting

$$E_{hfs}^{lattice} = E_{hfs} \left[1 - (\Lambda a)^2 + \mathcal{O}(a^4) \right], \quad \Lambda = rac{C_F \alpha_s m_q}{2\sqrt{2}} \sim 530 \,\, \mathrm{MeV}$$

Extrapolation to small a : 52.7 MeV

Ground State Hyperfine Splitting

$$E_{hfs}^{lattice} = E_{hfs} \left[1 - (\Lambda a)^2 + \mathcal{O}(a^4)
ight], \quad \Lambda = rac{C_F lpha_s m_q}{2\sqrt{2}} \sim 530 \,\, {
m MeV}$$

Extrapolation to small a : 52.7 MeV

- HPQCD result: 60.0 ± 6.4 MeV
- $\bullet\,$ Baker et. al. result: 52.9 $\pm\,$ 5.5 MeV

Ground State Hyperfine Splitting

$$E_{hfs}^{lattice} = E_{hfs} \left[1 - (\Lambda a)^2 + \mathcal{O}(a^4)
ight], \quad \Lambda = rac{C_F lpha_s m_q}{2\sqrt{2}} \sim 530 \,\, ext{MeV}$$

Extrapolation to small a : 52.7 MeV

- HPQCD result: 60.0 ± 6.4 MeV
- Baker et. al. result: 52.9 ± 5.5 MeV

Ground State Hyperfine Splitting

$$E_{hfs}^{lattice} = E_{hfs} \left[1 - (\Lambda a)^2 + \mathcal{O}(a^4)
ight], \quad \Lambda = rac{C_F lpha_s m_q}{2\sqrt{2}} \sim 530 \,\, ext{MeV}$$

Extrapolation to small a : 52.7 MeV

- HPQCD result: 60.0 ± 6.4 MeV
- Baker et. al. result: 52.9 ± 5.5 MeV

Resolved ambiguity in the lattice data!

- Revised matching procedure for lattice NRQCD
- Lattice data does not contain Coulomb linear artifacts
- Final lattice prediction:

$$E_{hfs} = 52.9 \pm 5.5$$
 MeV

 \bullet Agrees with Belle: 57.9 \pm 2.3 MeV

References

- B. A. Kniehl, A. Penin, A. Pineda, V. Smirnov, M. Steinhauser, PRL 92, 242001 (2004).
- R. J. Dowdall et al. [HPQCD Collaboration], PRD 85, 054509 (2012) [Erratum-ibid. 104, 199901 (2010)]
- R. J. Dowdall et al. [HPQCD Collaboration], PRD 89, 031502 (2014) [Erratum-ibid. 92, 039904 (2015)]
- M. Baker, A. A. Penin, D. Seidel and N. Zerf, PRD 92, 054502 (2015)

Why not Lattice QCD?

- To accomodate short-distance effects: $a \ll \frac{1}{m_a}$
- To include NP effects: $\frac{1}{\Lambda_{QCD}} \ll L$
- Number of points: $\left(\frac{L}{a}\right)^4 \gg \left(\frac{m_q}{\Lambda_{QCD}}\right)^4 \sim 20^4$ for $m_b \sim 5~{
 m GeV}$
- Lattice NRQCD: $\left(\frac{L}{a}\right)^4 \gg \left(\frac{m_q v}{\Lambda_{QCD}}\right)^4 \sim 6^4$ for $m_b \sim 5~{
 m GeV}$

bb Spectrum

æ

⊸ ≣ ⊁

Babar decay, all background subtracted

BaBar Collaboration, PRL 101, 071801 (2008)