A Silicon Tracker for ISAC-II at TRIUMF

Dennis Mücher University of Guelph TRIUMF

Nucleosynthesis and shell evolution

The origin of shell evolution

what dominates shell evolution in nuclei?

type-I/II shell evolution: central + tensor force or ...

T. Otsuka et al., PRL 104, 012501 (2010)

... properties of weakly bound neutron orbits in spherical potential? or ...

Z=40: following the r-process using GRIFFIN and DESCANT

proposed Z=40 quenching at N=82 from data: impact on r-process!

J. Taprogge et al., PRL **112**, 132501 (2014)

CANREB / ARIEL beams will offer unique opportunities to study nuclear structure along the r-process

(c)

(d)

- SHARC: 4π silicon strip detector; fully digital readout
- TIGRESS: high granularity, high efficiency HPGe detector array

goal: remove the compromise between luminosity and Qvalue resolution

Single-neutron orbits near ⁷⁸Ni: Spectroscopy of the N = 49isotope ⁷⁹Zn

R. Orlandi^{a,b,c,d,e,*}, D. Mücher^f, R. Raabe^b, A. Jungclaus^a, S.D. Pain^g, V. Bildstein^f, R. Chapman^{c,d}, G. de Angelis^h, J.G. Johansenⁱ, P. Van Duppen^b, A.N. Andreyev^{c,d,j,e},

 CD_2

⁴⁸Ca(d,p)⁴⁹Ca Projections after Doppler Correction

Q-value resolution:

- Construct level scheme
- Measure I transfer
- Doppler correction
- Control feeding

...

160 ug/cm² CD₂ 400 keV FWHM

Active targets at ISOL facilities

ANASEN detector, NSCL

TACTIC @ TRIUMF (unfinished):

- not coupled to TIGRESS
- angular resolution not sufficient for good Q-value resolution
- about 10% CO₂ detector gas →
 background from fusion evaporation
- timing and energy resolution not optimal

Silicon Tracker: Geant4 simulations

Silicon Tracker: Geant4 simulations

Silicon Tracker Design

- Compact design -> high segmentation: 128 channels (first layer, single sided)
- 128 x 64 (second layer, double sided)
- Approx. 3000 channels (current design)

	4x5 cm ² single-sided, 12um thin, 128 strips	
	H,D,He,CH ₂ up to 3bar	
X	8x5 cm ² double sided, 50um thin, 128+64 strips)	
essure monitor	3mm Pad or <u>CsI+APD</u>	pressure mo
		pressure monitor
←	20.2cm	

Silicon Tracker ASIC: SKIROC2

- Compact design -> high segmentation: 128 channels (first layer, single sided)
- 128 x 64 (second layer, double sided)
- Approx. 3000 channels (current design)

- 64 chn, designed for Si-PIN (5mm²; 20 pF)
- dyn. range: 0.1 MIP/4 fC ... 2500 MIPs/10 pC
- charge PA (positive), slow & fast shaper, 15 depth SCA, TDC & ADC (12 bit), 4kbytes RAM
- + PowerPulsing: ~ 25 μ W/chn, ENC < 0.4 fC

RIKEN Silicon Tracker

- PCB-design: M. Böhmer + E12+E18
- based on APV-25 CMS ASIC
- silicon: 100 um thickness, AC
- 100 um pitch, 8x5 cm single sided
- readout: TRB HADES (L. Maier)
- roughly 8000 channels

collaboration TUM + RIKEN + Univ. of Guelph

- shell evolution via one-neutron transfer towards and beyond N=82
- proton-neutron correlations beyond 132 Sn: 132 Sn(α , 136 Te) γ
- i-process: (d,p) n-rich in Kr region and around unstable ¹³⁵I

F. Herwig et al., ApJ 792, L3 (2014)

- shell evolution via one-neutron transfer towards and beyond N=82
- proton-neutron correlations beyond ¹³²Sn: ¹³²Sn(α , ¹³⁶Te) γ

- our data on ⁴⁸Ca(α,⁵²Ti)γ reveal strong sensitivity on proton-neutron structure for excited 2⁺ states
- can be used to study
 anomaly of 2⁺ energies beyond N=82 via
 ¹³²Sn(α,¹³⁶Te)γ

⁴⁸Ca(α ,⁵²Ti) γ (MINIBALL) analysis: Fuad Ali, UofG

- shell evolution via one-neutron transfer towards and beyond N=82
- proton-neutron correlations beyond ¹³²Sn: ¹³²Sn(α , ¹³⁶Te) γ ٠
- i-process: (d,p) n-rich in Kr region and around unstable ¹³⁵I ٠
- excitation functions in transfer reactions ٠
- excitation energies and spectroscopic factors of resonances within the rp-process
- measurement of (p,α) and (α,p) rates for X-ray bursts studies, e.g ¹⁴O (α,p) ¹⁷F
- S-factor for ⁸Li(α ,n)¹¹B reaction

submitted to EEC (A. Kilic, UofG)

5.0

E_{cm} (MeV

10.0

 $i+^{4}He \rightarrow {}^{11}B_{no}+n$

- shell evolution via one-neutron transfer towards and beyond N=82
- proton-neutron correlations beyond ¹³²Sn: ¹³²Sn(α , ¹³⁶Te) γ
- i-process: (d,p) n-rich in Kr region and around unstable ¹³⁵I
- excitation functions in transfer reactions
- excitation energies and spectroscopic factors of resonances within the rp-process
- measurement of (p,α) and (α,p) rates for X-ray bursts studies, e.g $^{14}O(\alpha,p)^{17}F$
- S-factor for ${}^{8}Li(\alpha,n)^{11}B$ reaction
- Oslo-type experiments level density & γ-ray strength function via (d,p) reactions: astrophysics, reactor design, waste transmutation

Silicon Tracker: Status

- Ali Kilic, UofG
- Devin Hymers, Charlie Pham (both UofG): Geant4
- Vinzenz Bildstein, UofG
- **R. Gernhäuser, C. Berner, M. Böhmer** (TU Munich): ASIC
- E. Pollacco (CEA France): ASICs
- F. Sarazin (Mines)

Manpower:

- **Design:** UofG+TRIUMF+Mines
- Silicons: Micron Semiconductor
- ASIC: Saclay, France
- FPGA: UofG, TRIUMF
- PCB, pitch adapter: TU Munich
- Readout: UofG + TRIUMF
- Mechanics: Mines, TRIUMF
- gate-0 at TRIUMF: 🔽
- 24.10.16: meeting w. TRIUMF detector
 + electronics experts
- mid 2017: JELF proposal (UofG internal discussion with Dean has started)
- End 2019 commissioning

Silicon Tracker: Status

Manpower:

- **Design:** UofG+TRIUMF+Mines
- Silicons: Micron Semiconductor
- ASIC: Saclay, France
- FPGA: UofG, TRIUMF
- PCB, pitch adapter: TU Munich
- Readout: UofG + TRIUMF
- Mechanics: Mines, TRIUMF

- Ali Kilic, UofG
- Devin Hymers, Charlie Pham (both UofG): Geant4
- Vinzenz Bildstein, UofG
- **R. Gernhäuser, C. Berner, M. Böhmer** (TU Munich): ASIC
- E. Pollacco (CEA France): ASICs
- F. Sarazin (Mines)

