

Phase Evolution in

Proton-irradiated (α+β) Ti6Al4V N. Simos (BNL), D. Sprouster (BNL, Stony Brook U.), M. Palmer (BNL), N. Charitonidis (CERN), K. McDonald (Princeton U.),

and Z. Kotsina (National Centre of Scientific Research "Demokritos", Athens)

Radiation Damage in Accelerator

Targets Environments

Overview

(α+β) Ti6Al4V considered in Neutrino Factory-Muon Collider (mid-Z material)

- Irradiation:
 - With protons at BNL-BLIP in two (2) phases to ~5×10²⁰ p/cm² (total)
 - Post-irradiation annealing between phases
- Post-irradiation thermal analysis (precision dilatometry) and mechanical testing:
 - Thermal analysis to ~810 °C revealed phase transitions and the effects of irradiation in shifting the temperature ranges for the transitions
 - Mechanical testing revealed
 - Loss of ductility
 - More significantly ⇒ *almost complete loss of UNIFORM ELONGATION*
- Energy Dispersive X-ray Diffraction with in-situ pure bending stress at NSLS synchrotron revealed:
 - The appearance of a *faint new phase that looks like the \omega phase*
 - Symmetries between tension and compression
- XRD experiments at NSLS-II with in-situ pure bending stress state combined with Refined Rietveld analysis showed:
 - Fluctuations between α and β phases as a result of the level of straining
 - Further evidence that the ω phase in <10nm size has formed as a result of irradiation

Ti6AI4V Irradiation Experiments

• Phase-I: 140 MeV protons at BLIP

3

- Peak fluence of ~ 1.1×10²⁰ p/cm²
- **Phase-II**: Selected samples from the array were re-irradiated following thermal analysis between irradiations.
 - CTE Samples: Peak fluence of ~2.6×10²⁰ p/cm² following 2nd irradiation (Samples: T02 and T04)
 - TENSILE samples: Peak fluence of ~5.14×10²⁰ p/cm² after 2nd irradiation
- Post-irradiation Analyses:
 - Thermal analysis (dilatometry) on CTE type specimens
 - Mechanical testing (tensile fracture)
 - EDXRD analysis (NSLS) with 200 keV polychromatic X-rays
 - In-situ 4-point bending (pure bending stress)
 - XRD analysis with 67 keV monochromatic X-rays (NSLS-II XPD beamline)
 - Also with in-situ 4-point bending stress
 - Refined Rietveld analysis for phase ID

Beam 1 σ (~6mm)

STATES STATES BEARING BRANCING BOOM

Phase Transformation Kinetics

Linear Heating of (α+β) Ti6Al4V Dilatometry-based Study

- Several studies have studied the kinetics of *unirradiated* Ti6Al4: [Dilatometry, Differential Scanning Calorimetry, and HEXRD (Rietveld)]
 - Pere Barriobero-Vila, et al.
 - "Role of element partitioning on the α - β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating", J. of Alloys and Compounds, 626 (2015), 330-339
 - "Phase transformation kinetics during continuous heating of a b-quenched Ti–10V–2Fe–3Al alloy," J Mater Sci (2015) 50:1412–1426
 - P. Homporova et al.
 - "Dynamic phase evolution in titanium alloy Ti6Al4V

BNL Study

- Observe the effect of proton irradiation on the phase transformations observed through heating
 - α" ⇒ β at low temperatures
 - α ⇒ β at high temperatures
 - Possible indication of radiation-induced ω phase
- Additional transformation kinetics:
 - A fast athermal α $\Rightarrow \beta$ reversion
 - Degree of transformation increases with heating rate
 - Takes place at low temperatures ~170-315°C
 - Full reversion of α " into β observed for 50 K/min heating
 - Ti alloys:
 - ω phase forms from β via:
 - Quenching from β field
 - During isothermal aging of β metastable phase at low temperatures (< 500 °C)

Volume fraction evolution of α and β obtained by Rietveld analysis as a function of temperature during continuous heating (Barriobero, et al)

The of $\alpha^{"} \rightarrow \beta$ at low temperatures and the $\alpha \rightarrow \beta$ at high temperatures are observed in this study using precision dilatometry (see above). Also shown is the low dose irradiation effect on the $\alpha^{"} \rightarrow \beta$.

Ti6Al4V: Irradiation Studies

Ti6AI4V: Irradiation Damage Effects

- Higher dose samples were re-irradiated to 2.4×10²⁰ p/cm²
- Sample with 0.6×10²⁰ p/cm² shown has undergone several thermal cycles of annealing
- Post-irradiation heating to only 600°C

IMPORTANT OBSERVATIONS:

- At C: New transformation seen for 2 different samples irradiated to 2.4×10²⁰ p/cm²
 - Peak is exothermic indicating martensitic transformation
 - Transformation seems to appear above a threshold fluence location and 13 occurrence not impacted by thermal cycling!!!
 - Recall: Ti-02 and Ti-04 CTE samples thermally annealed between irradiations
- At A: α"⇔β takes place (as discussed previously)
 - Very faint evidence after irradiation to 2.4×10²⁰ p/cm²
- At **D**: Local minima of the α_{β} observed in 430-530°C range
 - 5°C/min
 - Rietveld analysis
 - α⇒β transition observed at ~550°C (unirradiated) apparently shifts to lower temperature as a result of irradiation (D location)

6th RADIATE Collaboration Meeting -TRIUMF, December 9-12, 2019

(α+β) Ti6AI4V Irradiation: Stress-Strain

Assessment:

- Unirradiated Ti6Al4V shows very reproducible behavior
 - Kinks within the elastic range at same locations are most likely attributable to the hcp alpha phase
 - Signs of ductile failure and some work hardening
- Irradiation at ~180-240°C leads to:
 - Yield stress increase
 - Almost no uniform elongation at higher fluences
 - Some ductility remains in Ti6Al4V to be compared with Ti alloy Gum metal, which turned completely brittle after the same irradiation process
- "Kinks" are still observable following irradiation

Ti6AI4V Irradiation: X-Ray Diffraction Experiments

Experiments were conducted using:

- NSLS X17B1 Beamline
 - 200 keV polychromatic X-rays
 - In-situ four-point bending stress
 - EDXRD techniques
- NSLS-II XPD Beamline
 - 67 keV monochromatic X-rays
 - In-situ four-point bending
 - Refined Rietveld technique

6th RADIATE Collaboration Meeting - TRIUMF, December 9-12, 2019

Ti6Al4V EDXRD Results: ω Phase Appearance

2θ(°)

 μ m

Consistent with appearance of new ophase throughout bulk

Increasing Fluence

Ti6Al4V EDXRD Results: Irradiation Effects on α , β Phases

Tension-Compression Asymmetry

6th RADIATE Collaboration Meeting - TRIUMF, December 9-12, 2019

Ti6AI4V EDXRD Results: Tension-Compression Asymmetry

Irradiated Ti6AI4V: Refined Rietveld Analysis

α and β phase fraction as a result of applied in-situ stress

NATIONAL LABORATORY

	а	±a	С	±c	size	± size	Fraction
phase	Å	Å	Å	Å	nm	nm	%
β (bcc)	3.20841	0.00128			46.12	17.81	3
α (hcp)	2.92541	0.00019	4.66542	0.00045	125.60	4.42	97
β	3.20561	0.00109			35.76	8.40	2.5
α	2.92452	0.00018	4.66484	0.00041	128.72	9.86	97.5
β	3.20699	0.00098			35.96	2.39	2
α	2.92605	0.00018	4.66713	0.00044	121.77	8.10	98
	phase β (bcc) α (hcp) β β α β α β α β α β α β α β α β α β α	aphaseÅβ (bcc)3.20841α (hcp)2.92541β3.20561α2.92452β3.20699α2.92605	a $\pm a$ phaseÅ β (bcc)3.20841 α (hcp)2.92541 β 3.20561 α 2.92452 α 2.92452 β 3.20699 β 3.20699 α 2.92605 α 2.92605	a $\pm a$ cphaseÅÅÅ β (bcc)3.208410.00128- α (hcp)2.925410.000194.66542 β 3.205610.00109- α 2.924520.000184.66484 β 3.206990.00098- α 2.926050.000184.66713	a $\pm a$ c $\pm c$ phaseÅÅÅÅ β (bcc) 3.20841 0.00128 $\alpha (hcp)2.925410.000194.665420.00045\beta3.205610.00109\alpha2.924520.000184.664840.00041\beta3.206990.00098\alpha2.926050.000184.667130.00044$	a $\pm a$ c $\pm c$ sizephaseÅÅÅÅ nm β (bcc) 3.20841 0.00128 $Vertor46.12\alpha (hcp)2.925410.000194.665420.00045125.60\beta3.205610.00109Vertor35.76\alpha2.924520.000184.664840.00041128.72\beta3.206990.00098Vertor35.96\alpha2.926050.000184.667130.00044121.77$	a $\pm a$ c $\pm c$ size \pm sizephase $Å$ $Å$ $Å$ $Å$ Λ nmnm β (bcc) 3.20841 0.00128 $$ 46.12 17.81 α (hcp) 2.92541 0.00019 4.66542 0.00045 125.60 4.42 β 3.20561 0.00109 $$ 35.76 8.40 α 2.92452 0.00018 4.66484 0.00041 128.72 9.86 β 3.20699 0.00098 $$ 35.96 2.39 α 2.92605 0.00018 4.66713 0.00044 121.77 8.10

S. DEPARTMENT OF

Irradiated Ti6AI4V: Refined Rietveld Analysis

Comments:

- Stability of α and β phases of Ti-6AI-4V following irradiation (ω phase nano? i.e. <10nm).
- To unequivocally say, one would need better angular resolution.
 - Future experiments: longer sample to detector distance will to resolve the peaks from this phase.
 - These experiments planned for the NSLS-II XPD
- Note: EDXRD technique at NSLS has also revealed the appearance of the phase that resembles the ω phase

Ti6AI4V: Summary and Next Steps

Summary:

- The BNL irradiation study followed by dilatometric and X-ray characterization revealed
 - The effects of irradiation on the α , β evolution
 - The appearance of ω -phase as a result of proton exposure
- Observed asymmetries between tension and compression and activation of twinning from the $hcp(\alpha)$ phase
- Conducted X-ray diffraction with Refined Rietveld analysis and in-situ four-point bending stress
 - NSLS: EDXRD with polychromatic 200 keV x-rays
 - NSLS-II: XRD with monochromatic 67 keV x-rays

Next Steps:

- X-ray tomography, small angle scattering with in-situ multidirectional loading (3-point, 4-point bending)
- Tension (to fracture) of irradiated samples combined with compression and/or twisting
- Low cycle fatigue
- Further verification of the ω phase appearance and the $\alpha\text{-}\beta$ phase volume fraction

Upcoming Experimental Plans:

- X-ray tomography/X-ray diffraction with in-situ low-cycle fatigue of proton-irradiated Ti6Al4V *Planned for NSLS-II XPD during Spring 2020 Run*
- Fracture toughness of pre-notched/irradiated Ti6Al4V Utilizing the micro-beam achieved at NSLS-II XPD (~20x30 μm)
- X-ray imaging and X-ray tomography Utilizing the NSLS-II HEX beamline (currently under construction)

Commissioning Run for

NSLS-II XPD Spring Campaign Now Complete

Thank you for your attention!

6th RADIATE Collaboration Meeting - TRIUMF, December 9-12, 2019

16